首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123959篇
  免费   8582篇
  国内免费   19篇
  2023年   635篇
  2022年   631篇
  2021年   1488篇
  2020年   1261篇
  2019年   1395篇
  2018年   2998篇
  2017年   2667篇
  2016年   3808篇
  2015年   5680篇
  2014年   5840篇
  2013年   7794篇
  2012年   9393篇
  2011年   8801篇
  2010年   5610篇
  2009年   4373篇
  2008年   7164篇
  2007年   7094篇
  2006年   6484篇
  2005年   6025篇
  2004年   5629篇
  2003年   5201篇
  2002年   4818篇
  2001年   2384篇
  2000年   2289篇
  1999年   2005篇
  1998年   968篇
  1997年   788篇
  1996年   666篇
  1995年   671篇
  1994年   671篇
  1993年   524篇
  1992年   1332篇
  1991年   1233篇
  1990年   1095篇
  1989年   1019篇
  1988年   954篇
  1987年   807篇
  1986年   735篇
  1985年   829篇
  1984年   728篇
  1983年   605篇
  1982年   476篇
  1981年   462篇
  1980年   405篇
  1979年   605篇
  1978年   472篇
  1977年   416篇
  1975年   450篇
  1974年   465篇
  1973年   478篇
排序方式: 共有10000条查询结果,搜索用时 961 毫秒
121.
Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine–glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.  相似文献   
122.
Proteolytic degradation of ribosomal proteins occurs during the preparation of subunits of the cytoplasmic ribosomes of the protozoa Tetrahymena thermophila and the isolated subunits are inactive. Addition of 5 mM iodoacetamide to cell suspensions before extraction inhibits proteolytic activity and permits isolation of active subunits. The protein complements of these subunits have been characterized in two different two-dimensional electrophoretic systems, and their molecular weights have been determined.  相似文献   
123.
124.
We investigated the mechanisms implicated in beta-cell mass reduction observed during late fetal and early postnatal malnutrition in the rat. Beta-cell regeneration, including proliferation and neogenesis, was studied after neonatal beta-cell destruction by streptozotocin (STZ). STZ was injected at birth and maternal food restriction was continued until weaning. Beta-cell mass, proliferation, and islet number were quantified by morphometrical measurements on pancreatic sections in STZ-injected normal (C-STZ) and malnourished (R-STZ) rats, with noninjected C and R rats as controls. At day 4, only 20% of the beta cell-mass remained in C-STZ rats. It regenerated to 50% that of noninjected controls, mainly through active neogenesis, as shown by the entire recovery of islet number/cm(2), and also through moderately increased beta-cell proliferation. In contrast, beta-cell mass from R-STZ animals poorly regenerated, despite a dramatic increase of beta-cell proliferation, because islet number/cm(2) recovered insufficiently. In conclusion, perinatal malnutrition impairs neogenesis and the capacity of beta-cell regeneration by neogenesis but preserves beta-cell proliferation, which remains the elective choice to increase beta-cell mass. These results provide an explanation for the impaired capacity of malnourished animals to adapt their beta-cell mass during aging or pregnancy, which aggravate glucose tolerance.  相似文献   
125.
126.
Readouts that define the physiological distributions of drugs in tissues are an unmet challenge and at best imprecise, but are needed in order to understand both the pharmacokinetic and pharmacodynamic properties associated with efficacy. Here we demonstrate that it is feasible to follow the in vivo transport of unlabeled drugs within specific organ and tissue compartments on a platform that applies MALDI imaging mass spectrometry to tissue sections characterized with high definition histology. We have tracked and quantified the distribution of an inhaled reference compound, tiotropium, within the lungs of dosed rats, using systematic point by point MS and MS/MS sampling at 200 µm intervals. By comparing drug ion distribution patterns in adjacent tissue sections, we observed that within 15 min following exposure, tiotropium parent MS ions (mass-to-charge; m/z 392.1) and fragmented daughter MS/MS ions (m/z 170.1 and 152.1) were dispersed in a concentration gradient (80 fmol-5 pmol) away from the central airways into the lung parenchyma and pleura. These drug levels agreed well with amounts detected in lung compartments by chemical extraction. Moreover, the simultaneous global definition of molecular ion signatures localized within 2-D tissue space provides accurate assignment of ion identities within histological landmarks, providing context to dynamic biological processes occurring at sites of drug presence. Our results highlight an important emerging technology allowing specific high resolution identification of unlabeled drugs at sites of in vivo uptake and retention.  相似文献   
127.
Rats were trained to run spontaneously, without stress, in running wheels. The running activity increased gradually and could reach a plateau of 7 km/night after 3–4 weeks. During the first hour of running in the dark phase the squeak threshold increased significantly and remained high in the morning. The degree of increased threshold was correlated to the amount of running activity. The squeak threshold declined during the following 6 hours of inactivity. A rapid decrease in threshold occurred after naloxone (1–2 mg/kg i.p.). It is suggested that long-lasting muscle exercise (e.g. jogging), acupuncture, and low frequency electrical stimulation of afferent nerve fibres produce discharges in muscle afferents which influence central endorphin mechanics giving analgetic effects.  相似文献   
128.
129.
130.
Horseradish peroxidase-catalyzed oxidation of p-phenetidine in the presence of either glutathione (GSH), cysteine, or N-acetylcysteine led to the production of the appropriate thioyl radical which could be observed using EPR spectroscopy in conjunction with the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. This confirms earlier work using acetaminophen (Ross, D., Albano, E., Nilsson, U., and Moldéus, P. (1984) Biochem. Biophys. Res. Commun. 125, 109-115). The further reactions of glutathionyl radicals (GS.), generated during horseradish peroxidase-catalyzed oxidation of p-phenetidine and acetaminophen in the presence of GSH, were investigated by following kinetics of oxygen uptake and oxidized glutathione (GSSG) formation. Oxygen uptake and GSSG generation were dependent on the concentration of GSH but above that which was required for maximal interaction with the primary amine or phenoxy radical generated during peroxidatic oxidation of p-phenetidine or acetaminophen, suggesting that a secondary GSH-dependent process was responsible for oxygen uptake and GSSG production. GSSG was the only product of thiol oxidation detected during peroxidatic oxidation of p-phenetidine or acetaminophen in the presence of GSH, but under nitrogen saturation conditions its production was reduced to 8 and 33% of the corresponding amounts obtained under aerobic conditions in the cases of p-phenetidine and acetaminophen, respectively. Nitrogen saturation conditions did not affect horseradish peroxidase-catalyzed metabolism. This shows that the main route of GSSG generation in such reactions is not by dimerization of GS. but via mechanism(s) involving oxygen consumption such as via GSSG-. or via GSOOH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号