首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13549篇
  免费   880篇
  国内免费   3篇
  2023年   69篇
  2022年   114篇
  2021年   271篇
  2020年   202篇
  2019年   272篇
  2018年   329篇
  2017年   303篇
  2016年   472篇
  2015年   691篇
  2014年   748篇
  2013年   953篇
  2012年   1144篇
  2011年   1065篇
  2010年   679篇
  2009年   632篇
  2008年   826篇
  2007年   789篇
  2006年   784篇
  2005年   669篇
  2004年   606篇
  2003年   607篇
  2002年   536篇
  2001年   96篇
  2000年   82篇
  1999年   99篇
  1998年   121篇
  1997年   122篇
  1996年   111篇
  1995年   91篇
  1994年   90篇
  1993年   87篇
  1992年   66篇
  1991年   58篇
  1990年   47篇
  1989年   48篇
  1988年   37篇
  1987年   27篇
  1986年   29篇
  1985年   45篇
  1984年   38篇
  1983年   38篇
  1982年   40篇
  1981年   45篇
  1980年   32篇
  1979年   30篇
  1978年   28篇
  1977年   20篇
  1975年   22篇
  1974年   19篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Blastoschizomyces capitatus is an uncommon, opportunistic pathogenic fungus, which causes invasive and disseminated infections. This microorganism is normally present in both environmental and normal human flora. Within a host, B. capitatus is able to grow in both unicellular yeast and multicellular filamentous growth forms. In this study, we obtained in vitro morphological conversion of B. capitatus from yeast-to-mycelial phase to investigate the presence and expression of glutathione transferase (GST) enzymes in both cell forms. A protein with GST activity using the model substrate 1-chloro-2,4-dinitrobenzene was detected in both morphologies and identified by tandem mass spectrometry as a eukaryotic elongation factor 1Bγ (eEF1Bγ) protein, a member of the GST superfamily. No significant difference in GST-specific activity and kinetic constants were observed between mycelial and yeast forms, indicating that eEF1Bγ protein did not show differential expression between the two phases.  相似文献   
992.
The C1 domains of novel PKCs mediate the diacylglycerol-dependent translocation of these enzymes. The four different C1B domains of novel PKCs (δ, ε, θ and η) were studied, together with different lipid mixtures containing acidic phospholipids and diacylglycerol or phorbol ester. The results show that either in the presence or in the absence of diacylglycerol, C1Bε and C1Bη exhibit a substantially higher propensity to bind to vesicles containing negatively charged phospholipids than C1Bδ and C1Bθ. The observed differences between the C1B domains of novel PKCs (in two groups of two each) were also evident in RBL-2H3 cells and it was found that, as with model membranes, in which C1Bε and C1Bη could be translocated to membranes by the addition of a soluble phosphatidic acid without diacylglycerol or phorbol ester, C1Bδ and C1Bθ were not translocated when soluble phosphatidic acid was added, and diacylglycerol was required to achieve a detectable binding to cell membranes. It is concluded that two different subfamilies of novel PKCs can be established with respect to their propensity to bind to the cell membrane and that these peculiarities in recognizing lipids may explain why these isoenzymes are specialized in responding to different triggering signals and bind to different cell membranes.  相似文献   
993.
Non-alcoholic fatty liver disease (NAFLD) is intimately associated with insulin resistance and hypertriglyceridemia, whereas many of the mechanisms underlying this association are still poorly understood. In the present study, we investigated the relationship between microsomal triglyceride transfer protein (MTP) and markers of endoplasmic reticulum (ER) stress in the liver of rats subjected to neonatal monosodium l-glutamate (MSG)-induced obesity. At age 120 days old, the MSG-obese animals exhibited hyperglycemia, hypertriglyceridemia, insulin resistance, and liver steatosis, while the control (CTR) group did not. Analysis using fast protein liquid chromatography of the serum lipoproteins revealed that the triacylglycerol content of the very low-density lipoprotein (VLDL) particles was twice as high in the MSG animals compared with the CTR animals. The expression of ER stress markers, GRP76 and GRP94, was increased in the MSG rats, promoting a higher expression of X-box binding protein 1 (XBP-1), protein disulfide isomerase (PDI), and MTP. As the XBP-1/PDI/MTP axis has been suggested to represent a significant lipogenic mechanism in the liver response to ER stress, our data indicate that hypertriglyceridemia and liver steatosis occurring in the MSG rats are associated with increased MTP expression.  相似文献   
994.
This work presents a controlled study of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) structural changes due to in vitro oxidation with copper ions. The changes were studied by small-angle x-ray scattering (SAXS) and dynamic light scattering (DLS) techniques in the case of LDL and by SAXS, DLS, and Z-scan (ZS) techniques in the case of HDL. SAXS data were analyzed with a to our knowledge new deconvolution method. This method provides the electron density profile of the samples directly from the intensity scattering of the monomers. Results show that LDL particles oxidized for 18 h show significant structural changes when compared to nonoxidized particles. Changes were observed in the electrical density profile, in size polydispersity, and in the degree of flexibility of the APO-B protein on the particle. HDL optical results obtained with the ZS technique showed a decrease of the amplitude of the nonlinear optical signal as a function of oxidation time. In contrast to LDL results reported in the literature, the HDL ZS signal does not lead to a complete loss of nonlinear optical signal after 18 h of copper oxidation. Also, the SAXS results did not indicate significant structural changes due to oxidation of HDL particles, and DLS results showed that a small number of oligomers formed in the sample oxidized for 18 h. All experimental results for the HDL samples indicate that this lipoprotein is more resistant to the oxidation process than are LDL particles.  相似文献   
995.
G protein‐coupled receptor kinase 2 (GRK2) plays a central role in the cellular transduction network. In particular, during chronic heart failure GRK2 is upregulated and believed to contribute to disease progression. Thereby, its inhibition offers a potential therapeutic solution to several pathological conditions. In the present study, we performed a SAR study and a NMR conformational analysis of peptides derived from HJ loop of GRK2 and able to selectively inhibit GRK2. From Ala‐scan and d ‐Ala point replacement, we found that Arg residues don't affect the inhibitory properties, while a d ‐amino acid at position 5 is key to the activity. Conformational analysis identified two β‐turns that involve N‐terminal residues, followed by a short extended region. These information can help the design of peptides and peptido‐mimetics with enhanced GRK2 inhibition properties. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 121–128, 2014.  相似文献   
996.
Olive mill wastewater (OMW) samples from two traditional varieties (Peranzana and Ogliarola Garganica) of Apulian region (southern Italy) and produced through continuous and traditional methods were microbiologically and chemically examined; thus, 104 yeasts were isolated and selected for further analyses. The strains were identified as Candida boidinii, Pichia holstii, Pichia membranifaciens, and Saccharomyces cerevisiae and analyzed to assess their suitability to metabolize phenols. Based on phenol metabolism, 27 strains were selected and inoculated into OMW aliquots to determine their ability to reduce phenols in vivo; then, five strains (identified with the codes 682—C. boidinii and 625, 642, 647, and 941—P. holstii) were used as a cocktail in wastewaters for a final validation step. In this last experiment, the effects of the temperature (10–30°C) and (NH4)2SO4 (0.0–6.0 g l−1) were studied through a central composite design approach, and the results highlighted that the cocktail was able to reduce phenols by 40% at 10°C with 6.0 g l−1 of (NH4)2SO4 added.  相似文献   
997.
998.
999.
The sensitivity to denaturant stress of the major (AGT-Ma) and the minor (AGT-Mi) allele of alanine:glyoxylate aminotransferase and P11L mutant has been examined by studying their urea-induced equilibrium unfolding processes with various spectroscopic and analytical techniques. AGT-Ma loses pyridoxal 5′-phosphate (PLP) and unfolds completely without exposing significant hydrophobic clusters through a two-state model (Cm ∼ 6.9 M urea). Instead, the unfolding of AGT-Mi and P11L variant proceeds in two steps. The first transition (Cm ∼ 4.6 M urea) involves PLP release, dimer dissociation and exposure of hydrophobic patches leading to a self-associated intermediate which is converted to an unfolded monomer in the second step. The unfolding pathways of apoAGT-Mi and apoP11L are similar to each other, but different from that of apoAGT-Ma. Notably, the monomerization step in apoAGT-Mi and apoP11L occurs with a Cm value (∼1.6 M urea) lower than in apoAGT-Ma (∼2.4 M urea). These data indicate that Pro11 is relevant for the stability of both the dimeric structure and the PLP binding site of AGT. Moreover, to understand the pathogenic consequences of G170R mutation on AGT-Mi at the protein level, G170R-Mi has been characterized. HoloG170R-Mi exhibits spectroscopic and catalytic features and urea unfolding profiles comparable to those of AGT-Mi, while the apo form monomerizes with a Cm of ∼1.1 M urea. These biochemical results are discussed in the light of the characteristics of the enzymatic phenotype of PH1 patients bearing G170R mutation in AGT-Mi and the positive response of these patients to pyridoxine treatment.  相似文献   
1000.
Calcium (Ca2+) is an important ion that is necessary for the activation of different DNA repair mechanisms. However, the mechanism by which DNA repair and Ca2+ homeostasis cooperate remains unclear. We undertook a systems biology approach to verify the relationship between proteins associated with Ca2+ homeostasis and DNA repair for Saccharomyces cerevisiae. Our data indicate that Pmr1p, a Ca2+ transporter of Golgi complex, interacts with Cod1p, which regulates Ca2+ levels in the endoplasmic reticulum (ER), and with Rad4p, which is a nucleotide excision repair (NER) protein. This information was used to construct single and double mutants defective for Pmr1p, Cod1p, and Rad4p followed by cytotoxic, cytostatic, and cell cycle arrest analyses after cell exposure to different concentrations of 4-nitroquinoline 1-oxide (4-NQO). The results indicated that cod1Δ, cod1Δrad4Δ, and cod1Δpmr1Δ strains have an elevated sensitivity to 4-NQO when compared to its wild-type (WT) strain. Moreover, both cod1Δpmr1Δ and cod1Δrad4Δ strains have a strong arrest at G2/M phases of cell cycle after 4-NQO treatment, while pmr1Δrad4Δ have a similar sensitivity and cell cycle arrest profile when compared to rad4Δ after 4-NQO exposure. Taken together, our results indicate that deletion in Golgi- and ER-associated Ca2+ transporters affect the repair of 4-NQO-induced DNA damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号