首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   14篇
  国内免费   1篇
  2023年   5篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   15篇
  2014年   11篇
  2013年   16篇
  2012年   22篇
  2011年   16篇
  2010年   9篇
  2009年   13篇
  2008年   12篇
  2007年   17篇
  2006年   19篇
  2005年   16篇
  2004年   14篇
  2003年   12篇
  2002年   10篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1959年   1篇
排序方式: 共有259条查询结果,搜索用时 78 毫秒
61.
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325–554 and R15B340–639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325–674 and R15B340–713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.  相似文献   
62.
The codon usage of the Angiosperm psbA gene is atypical for flowering plant chloroplast genes but similar to the codon usage observed in highly expressed plastid genes from some other Plantae, particularly Chlorobionta, lineages. The pattern of codon bias in these genes is suggestive of selection for a set of translationally optimal codons but the degree of bias towards these optimal codons is much weaker in the flowering plant psbA gene than in high expression plastid genes from lineages such as certain green algal groups. Two scenarios have been proposed to explain these observations. One is that the flowering plant psbA gene is currently under weak selective constraints for translation efficiency, the other is that there are no current selective constraints and we are observing the remnants of an ancestral codon adaptation that is decaying under mutational pressure. We test these two models using simulations studies that incorporate the context-dependent mutational properties of plant chloroplast DNA. We first reconstruct ancestral sequences and then simulate their evolution in the absence of selection on codon usage by using mutation dynamics estimated from intergenic regions. The results show that psbA has a significantly higher level of codon adaptation than expected while other chloroplast genes are within the range predicted by the simulations. These results suggest that there have been selective constraints on the codon usage of the flowering plant psbA gene during Angiosperm evolution.  相似文献   
63.
64.
Influence of loop size on the stability of intramolecular DNA quadruplexes   总被引:9,自引:6,他引:3  
We have determined the stability of intramolecular DNA quadruplexes in which the four G3-tracts are connected by non-nucleosidic linkers containing propanediol, octanediol or hexaethylene glycol, replacing the TTA loops in the human telomeric repeat sequence. We find that these sequences all fold to form intramolecular complexes, which are stabilized by lithium < sodium < potassium. Quadruplex stability increases in the order propanediol < hexaethylene glycol < octanediol. The shallower shape of the melting profile with propanediol linkers and its lower dependency on potassium concentration suggests that this complex contains fewer stacks of G-quartets. The sequence with octanediol linkers displays a biphasic melting profile, suggesting that it can adopt more than one stable structure. All these complexes display melting temperatures above 310 K in the presence of 10 mM lithium, without added potassium, in contrast to the telomeric repeat sequence. These complexes also fold much faster than the telomeric repeat and there is little or no hysteresis between their melting and annealing profiles. In contrast, the human telomeric repeat sequence and a complex containing two hexaethylene glycol groups in each loop, are less stable and fold more slowly. The melting and annealing profiles for the latter sequence show significant differences, even when heated at 0.2°C min–1. CD spectra for the oligonucleotides containing non-nucleosidic linkers show positive maxima at 264 nm, with negative minima ~244 nm, which are characteristic of parallel quadruplex structures. These results show that the structure and stability of intramolecular quadruplexes is profoundly influenced by the length and composition of the loops.  相似文献   
65.
Accumulation of lipid inclusions in Brassica rapa embryos generated under slow horizontal clinorotation and in the laboratory control were analyzed by histochemical methods. The research of lipid accumulation was carried out on consecutive stages of the embryo development, from the moment of two-cellular proembryo formation up to the stages of their full differentiation (21-22-day-old embryos). Accumulation of lipid drops was revealed for the first time at early stages of embryogenesis in this species, beginning from 3-day-old embryos (ball-like stage of embryo development) under clinorotation and in the laboratory control. The quantity of lipid inclusion was estimated by morphometrical analysis. Statistically significant differences between the clinorotation and laboratory control variants in quantity of lipid drops per cell were revealed from 6-day-old embryos (heart-shaped stage). Especially pronounced differences were noted in differentiated embryos (beginning from 12-day-old embryos) under horizontal clinorotation in comparison with the laboratory control. The registered differences testify about influence of altered gravity conditions on lipid accumulation in Brassica rapa embryos.  相似文献   
66.
Thermal denaturation and aggregation of beta(L)-crystallin from bovine lens have been studied using differential scanning calorimetry (DSC) and dynamic light scattering (DLS). According to the DLS data, the distribution of the beta(L)-crystallin aggregates by their hydrodynamic radius (R(h)) remains monomodal to the point of precipitating aggregates (sodium phosphate, pH 6.8; 100 mM NaCl; 60 degrees C). The size of the start aggregates (R(h,0)) and duration of the latent stage (t(0)) leading to the formation of the start aggregates have been determined from the light scattering intensity versus the hydrodynamic radius plots and the dependences of R(h) on time. The R(h,0) value remains constant at variation of the beta(L)-crystallin concentration, whereas the t(0) value increases with diminishing beta(L)-crystallin concentration. The suppression of beta(L)-crystallin aggregation by alpha-crystallin is connected with the decrease in the R(h,0) value and increase in the t(0) value. In the presence of alpha-crystallin the aggregate population is split into two components. The first component is represented by stable aggregates whose size remains constant in time. The aggregates of the other kind grow until they reach the size characteristic of aggregates prone to precipitation. The DSC data show that alpha-crystallin has no appreciable influence on thermal denaturation of beta(L)-crystallin.  相似文献   
67.
The GCN2 protein kinase coordinates protein synthesis with levels of amino acid stores by phosphorylating eukaryotic translation initiation factor 2. The autoinhibited form of GCN2 is activated in cells starved of amino acids by binding of uncharged tRNA to a histidyl-tRNA synthetase-like domain. Replacement of Arg-794 with Gly in the PK domain (R794G) activates GCN2 independently of tRNA binding. Crystal structures of the GCN2 protein kinase domain have been determined for wild-type and R794G mutant forms in the apo state and bound to ATP/AMPPNP. These structures reveal that GCN2 autoinhibition results from stabilization of a closed conformation that restricts ATP binding. The R794G mutant shows increased flexibility in the hinge region connecting the N- and C-lobes, resulting from loss of multiple interactions involving Arg794. This conformational change is associated with intradomain movement that enhances ATP binding and hydrolysis. We propose that intramolecular interactions following tRNA binding remodel the hinge region in a manner similar to the mechanism of enzyme activation elicited by the R794G mutation.  相似文献   
68.
69.
Tail-tip clipping is a common technique for collecting tissue samples from amphibian larvae and adults. Surprisingly, studies of this invasive sampling procedure or of natural tail clipping – i.e., bites inflicted by predators including conspecifics - on the performance and fitness of aquatic larval stages of urodeles are scarce. We conducted two studies in which we assessed the effects of posterior tail clipping (~30 percent of tail) on Near Eastern fire salamander (Salamandra infraimmaculata) larvae. In a laboratory study, we checked regeneration rates of posterior tail-tip clipping at different ages. Regeneration rates were hump-shaped, peaking at the age of ~30 days and then decreasing. This variation in tail regeneration rates suggests tradeoffs in resource allocation between regeneration and somatic growth during early and advanced development. In an outdoor artificial pond experiment, under constant larval densities, we assessed how tail clipping of newborn larvae affects survival to, time to, and size at metamorphosis. Repeated measures ANOVA on mean larval survival per pond revealed no effect of tail clipping. Tail clipping had correspondingly no effect on larval growth and development expressed in size (mass and snout-vent length) at, and time to, metamorphosis. We conclude that despite the given variation in tail regeneration rates throughout larval ontogeny, clipping of 30% percent of the posterior tail area seems to have no adverse effects on larval fitness and survival. We suggest that future use of this imperative tool for the study of amphibian should take into account larval developmental stage during the time of application and not just the relative size of the clipped tail sample.  相似文献   
70.
Previously it has been shown by our group that berberine and palmatine, penetrating cations of plant origin, when conjugated with plastoquinone (SkQBerb and SkQPalm), can accumulate in isolated mitochondria or in mitochondria of living cells and effectively protect them from oxidative damage. In the present work, we demonstrate that SkQBerb, SkQPalm, and their analogs lacking the plastoquinone moiety (C10Berb and C10Palm) operate as mitochondria-targeted compounds facilitating protonophorous effect of free fatty acids. These compounds induce proton transport mediated by small concentrations of added fatty acids both in planar and liposomal model lipid membranes. In mitochondria, such an effect can be carried out by endogenous fatty acids and the adenine nucleotide translocase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号