首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   11篇
  2021年   5篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2015年   8篇
  2014年   16篇
  2013年   10篇
  2012年   8篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   6篇
  2007年   13篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2003年   18篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有174条查询结果,搜索用时 218 毫秒
71.
72.
This review aims to provide clinicians in Latin America with the most current information on the clinical aspects, diagnosis, and management of Hunter syndrome, a serious and progressive disease for which specific treatment is available. Hunter syndrome is a genetic disorder where iduronate-2-sulfatase (I2S), an enzyme that degrades glycosaminoglycans, is absent or deficient. Clinical manifestations vary widely in severity and involve multiple organs and tissues. An attenuated and a severe phenotype are recognized depending on the degree of cognitive impairment. Early diagnosis is vital for disease management. Clinical signs common to children with Hunter syndrome include inguinal hernia, frequent ear and respiratory infections, facial dysmorphisms, macrocephaly, bone dysplasia, short stature, sleep apnea, and behavior problems. Diagnosis is based on screening urinary glycosaminoglycans and confirmation by measuring I2S activity and analyzing I2S gene mutations. Idursulfase (recombinant I2S) (Elaprase®, Shire) enzyme replacement therapy (ERT), designed to address the underlying enzyme deficiency, is approved treatment and improves walking capacity and respiratory function, and reduces spleen and liver size and urinary glycosaminoglycan levels. Additional measures, responding to the multi-organ manifestations, such as abdominal/inguinal hernia repair, carpal tunnel surgery, and cardiac valve replacement, should also be considered. Investigational treatment options such as intrathecal ERT are active areas of research, and bone marrow transplantation is in clinical practice. Communication among care providers, social workers, patients and families is essential to inform and guide their decisions, establish realistic expectations, and assess patients’ responses.  相似文献   
73.

Background

Triatoma dimidiata, currently the major Central American vector of Trypanosoma cruzi, the parasite that causes Chagas disease, inhabits caves throughout the region. This research investigates the possibility that cave dwelling T. dimidiata might transmit the parasite to humans and links the blood meal sources of cave vectors to cultural practices that differ among locations.

Methodology/Principal Findings

We determined the blood meal sources of twenty-four T. dimidiata collected from two locations in Guatemala and one in Belize where human interactions with the caves differ. Blood meal sources were determined by cloning and sequencing PCR products amplified from DNA extracted from the vector abdomen using primers specific for the vertebrate 12S mitochondrial gene. The blood meal sources were inferred by ≥99% identity with published sequences. We found 70% of cave-collected T. dimidiata positive for human DNA. The vectors had fed on 10 additional vertebrates with a variety of relationships to humans, including companion animal (dog), food animals (pig, sheep/goat), wild animals (duck, two bat, two opossum species) and commensal animals (mouse, rat). Vectors from all locations fed on humans and commensal animals. The blood meal sources differ among locations, as well as the likelihood of feeding on dog and food animals. Vectors from one location were tested for T. cruzi infection, and 30% (3/10) tested positive, including two positive for human blood meals.

Conclusions/Significance

Cave dwelling Chagas disease vectors feed on humans and commensal animals as well as dog, food animals and wild animals. Blood meal sources were related to human uses of the caves. We caution that just as T. dimidiata in caves may pose an epidemiological risk, there may be other situations where risk is thought to be minimal, but is not.  相似文献   
74.
Immature stage VI Xenopus oocytes are arrested at the G(2)/M border of meiosis I until exposed to progesterone, which induces meiotic resumption through a non-genomic mechanism. One of the earliest events produced by this hormone is inhibition of the plasma membrane enzyme adenylyl cyclase (AC), with the concomitant drop in intracellular cAMP levels and reinitiation of the cell cycle. Recently Gsalpha and Gbetagamma have been shown to play an important role as positive regulators of Xenopus oocyte AC, maintaining the oocyte in the arrested state. However, a question that still remains unanswered, is how the activated state of Gsalpha and Gbetagamma is achieved in the immature oocyte, since no receptor or ligand have been found to be required. Here we provide evidence that xRic-8 can act in vitro and in vivo as a GEF for Gsalpha. Overexpression of xRic-8, through mRNA injection, greatly inhibits progesterone induced oocyte maturation and endogenous xRic-8 mRNA depletion, through siRNA microinjection, induces spontaneous oocyte maturation. These results suggest that xRic-8 is participating in the immature oocyte by keeping Gsalpha-Gbetagamma-AC signaling complex in an activated state and therefore maintaining G2 arrest.  相似文献   
75.
The therapeutic enzyme asparaginase, which is used for the treatment of acute lymphoblastic leukaemia, is industrially produced by the bacteria Escherichia coli or Erwinia crysanthemi. In spite of its effectiveness as a therapeutic agent, the drug causes severe immunological reactions. As asparaginase is also produced by the yeast Saccharomyces cerevisiae, this microorganism could be considered for the production of the enzyme, providing an alternative antitumoral agent. In this study the ASP3 gene, that codes for the periplasmic, nitrogen regulated, asparaginase II from S. cerevisiae, was cloned and expressed in the methylotrophic yeast Pichia pastoris, under the control of the AOX1 gene promoter. Similarly to S. cerevisiae the heterologous enzyme was addressed to the P. pastoris cell periplasmic space. Enzyme yield per dry cell mass reached 800 U g−1, which was seven fold higher than that obtained using a nitrogen de-repressed ure2 dal80 S. cerevisiae strain. High cell density cultures performed with P. pastoris harbouring the ASP3 gene using a 2 l instrumented bioreactor, where biomass concentration reached 107 g l−1, resulted in a dramatic increase in volumetric yield (85,600 U l−1) and global volumetric productivity (1083 U l−1 h−1).  相似文献   
76.

Background  

Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes.  相似文献   
77.
The mechanism of biocontrol of brown rot in stone fruit by Penicillium frequentans Westling (Pf909) was investigated using in vitro and in vivo growth assays and a benomyl-resistant strain of Monilinia fructicola (G Winter) Honey (Mf3C). For the in vitro assays, Pf909 and Mf3C conidia were suspended in Czapek-Dox broth, which was amended or not amended with a skin extract of mature peaches. The growth and germination of Pf909 and Mf3C conidia were determined by counting the number of colony-forming units on potato dextrose agar plates, which were amended or not amended with 0.5 g ml?1 benomyl. In some of the assays, germinated Pf909 conidia were used before their exposure to Mf3C conidia. For the in vivo assays, healthy cherries were inoculated with Mf3C conidia before and after applying Pf909 conidia on the cherry surface and the incidence of brown rot was recorded for seven days. Since we found that Pf909 conidia compete with Mf3C conidia for space and nutrients in the different assays, we concluded that competition is the probable primary mechanism of biocontrol of Pf909.  相似文献   
78.
Desmodium spp. are leguminous plants belonging to the tribe Desmodieae of the subfamily Papilionoideae. They are widely distributed in temperated and subtropical regions and are used as forage plants, for biological control, and in traditional folk medicine. The genus includes pioneer species that resist the xerothermic environment and grow in arid, barren sites. Desmodium species that form nitrogen-fixing symbiosis with rhizobia play an important role in sustainable agriculture. In Argentina, 23 native species of this genus have been found, including Desmodium incanum. In this study, a total of 64 D. incanum-nodulating rhizobia were obtained from root nodules of four Argentinean plant populations. Rhizobia showed different abiotic-stress tolerances and a remarkable genetic diversity using PCR fingerprinting, with more than 30 different amplification profiles. None of the isolates were found at more than one site, thus indicating a high level of rhizobial diversity associated with D. incanum in Argentinean soils. In selected isolates, 16S rDNA sequencing and whole-cell extract MALDI TOF analysis revealed the presence of isolates related to Bradyrhizobium elkanii, Bradyrhizobium japonicum, Bradyrhizobium yuanmingense, Bradyrhizobium liaoningense, Bradyrhizobium denitrificans and Rhizobium tropici species. In addition, the nodC gene studied in the selected isolates showed different allelic variants.Isolates were phenotypically characterized by assaying their growth under different abiotic stresses. Some of the local isolates were remarkably tolerant to high temperatures, extreme pH and salinity, which are all stressors commonly found in Argentinean soils. One of the isolates showed high tolerance to temperature and extreme pH, and produced higher aerial plant dry weights compared to other inoculated treatments. These results indicated that local isolates could be efficiently used for D. incanum inoculation.  相似文献   
79.
Pine sawyer beetle species of the genus Monochamus are vectors of the nematode pest Bursaphelenchus xylophilus. The introduction of these species into new habitats is a constant threat for those regions where the forestry industry depends on conifers, and especially on species of Pinus. To obtain information about the potential risk of establishment of these insects in Chile, we performed climate-based niche modeling using data for five North American and four Eurasian Monochamus species using a Maxent approach. The most important variables that account for current distribution of these species are total annual precipitation and annual and seasonal average temperatures, with some differences between North American and Eurasian species. Projections of potential geographic distribution in Chile show that all species could occupy at least 37% of the area between 30° and 53°S, where industrial plantations of P. radiata are concentrated. Our results indicated that Chile seems more suitable for Eurasian than for North American species.  相似文献   
80.
ABSTRACT

The mechanisms that allow monitoring of DNA damage and the activation of repair systems in plants are poorly known. In mammalian cells the tumor suppressor protein p53 plays an important role in the checkpoint pathway induced by DNA damage. In this work, we investigated the presence and distribution of the p53-like protein in pea root tip nuclei and its role during early germination in relation to DNA damage. In pea seed, PFGE and TdT assays show that DNA fragmentation occurs during maturation and dry seed storage, and that this DNA fragmentation is repaired at the beginning of germination before the onset of proliferation. In the same seeds, the p53-like protein was found during maturation and germination. Immunoblotting characterization of this protein led to the identification of a single specific protein of about 94 kDa, more abundant at the beginning of the hydration process than in actively cycling cells. Furthermore, the p53-like protein revealed different nuclear distribution patterns, probably in relation to the formation of DNA fragments in dry seeds, and to the reactivation of repair mechanisms during early germination. These data suggest that the presence of a p53-like protein in quiescent or proliferating pea embryo cells is related to DNA damage, and serves for the maintenance of genetic information and the development of normal seedlings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号