首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   866篇
  免费   65篇
  国内免费   1篇
  2023年   6篇
  2022年   4篇
  2021年   24篇
  2020年   8篇
  2019年   13篇
  2018年   22篇
  2017年   23篇
  2016年   28篇
  2015年   47篇
  2014年   41篇
  2013年   50篇
  2012年   64篇
  2011年   67篇
  2010年   32篇
  2009年   29篇
  2008年   55篇
  2007年   55篇
  2006年   41篇
  2005年   59篇
  2004年   38篇
  2003年   43篇
  2002年   40篇
  2001年   5篇
  2000年   5篇
  1999年   14篇
  1998年   6篇
  1997年   7篇
  1996年   8篇
  1995年   3篇
  1994年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   9篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1982年   5篇
  1981年   6篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1975年   2篇
  1974年   4篇
  1972年   2篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
91.
Mucosal immune tolerance in the healthy intestine is typified by lamina propria T cell (LPT) functional hyporesponsiveness after TCR engagement when compared with peripheral blood T cell (PBT). When LPT from an inflamed intestine are activated through TCR cross-linking, their responsiveness is stronger. LPT are thus capable of switching from a tolerant to a reactive state, toggling between high and low thresholds of activation. We demonstrate that in normal LPT global tyrosine phosphorylation upon TCR cross-linking or an increase in intracellular H2O2, an inhibitor of protein tyrosine phosphatases, is muted. Thus, we propose that LPT have a greater reducing capacity than PBT, shifting the balance between kinases and protein tyrosine phosphatases in favor of the latter. Surface gamma-glutamyl transpeptidase, an indirect indicator of redox potential, and glutathione are significantly elevated in LPT compared with PBT, suggesting that elevated glutathione detoxifies TCR-induced reactive oxygen species. When glutathione is depleted, TCR-induced LPT tyrosine phosphorylation rises to PBT levels. Conversely, increasing glutathione in PBT attenuates tyrosine phosphorylation. In LPT isolated from inflamed mucosa, TCR cross-linking induces greater phosphorylation, and gamma-glutamyl transpeptidase levels are reduced compared with those from autologous noninflamed tissue. We conclude that the high TCR signaling threshold of mucosal T cells is tuned by intracellular redox equilibrium, whose dysregulation may mediate intestinal inflammation.  相似文献   
92.
Redox-dependent modulation of the carrot SV channel by cytosolic pH   总被引:1,自引:0,他引:1  
Currents mediated by a slow vacuolar (SV) channel were recorded and characterized in vacuoles from cultured carrot cells. The carrot channel shows the typical functional characteristics reported for channels of the SV category previously identified in other plants, i.e., slow voltage-dependent activation kinetics, current activation favoured by cytosolic calcium and permeability to different monovalent cations. The carrot channel is strongly activated by cytosolic reducing agents (such as dithiothreitol, DTT, and glutathione, GSH) and has a peculiar dependence on cytosolic pH, which, in turn, is affected by the concentration of cytosolic reducing agents. Specifically, in 1 mM DTT or GSH the channel displayed a maximum conductance at neutral pH. The normalized conductance did not depend significantly on DTT concentration at acidic pH, while at alkaline pH the attenuation of the normalized conductance declines with increasing DTT concentration. Our results suggest two pH-titratable groups within the carrot SV channel, one of these depending on cysteine residues exposed to the cytosolic side of the vacuole.  相似文献   
93.
Human DNA polymerases (pols) beta and lambda could promote template slippage and generate -1 frameshifts on defined heteropolymeric DNA substrates containing a single abasic site. Kinetic data demonstrated that pol lambda was more efficient than pol beta in catalyzing translesion DNA synthesis past an abasic site, particularly in the presence of low nucleotide concentrations. Moreover, pol lambda was found to generate frameshifts in two ways: first, by using a nucleotide-stabilized primer misalignment mechanism, or second, by promoting primer reannealing using microhomology regions between the terminal primer sequence and the template strand. Our results suggest a molecular mechanism for the observed high in vivo rate of frameshifts generation by pol lambda and highlight the remarkable ability of pol lambda to promote microhomology pairing between two DNA strands, further supporting its proposed role in the nonhomologous end joining process.  相似文献   
94.
95.
96.
The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.  相似文献   
97.
The acid-base properties of Adenosine 5'-triphosphate (ATP) in NaCl and KCl aqueous solutions at different ionic strengths (0相似文献   
98.
Recently, a novel Fe-hydrogenase from a high rate of hydrogen producing Enterobacter cloacae strain IIT-BT08 was identified and partially characterized. This 147 residue protein was found to be much smaller than previously known Fe-hydrogenases, yet retaining a high catalytic activity. We predicted the structure of this protein and found it to be structurally similar to one of the two sub-domains containing the catalytic H-cluster so far jointly present in all other Fe-hydrogenases. This novel architecture allows a tentative explanation of protein function with the high rate of catalytic activity being due to a missing regulatory sub-domain, presumably allowing higher enzymatic activity at the cost of greater exposure to oxygen inactivation. This new insight may improve our understanding of the molecular and functional organization of other, more complex Fe-hydrogenases.  相似文献   
99.
100.
Mutations of RAS genes are critical events in the pathogenesis of different human tumors and Ras proteins represent a major clinical target for the development of specific inhibitors to use as anticancer agents. Here we present RasGRF1-derived peptides displaying both in vitro and in vivo Ras inhibitory properties. These peptides were designed on the basis of the down-sizing of dominant negative full-length RasGRF1 mutants. The over-expression of these peptides can revert the phenotype of K-RAS transformed mouse fibroblasts to wild type, as monitored by several independent biological readouts, including Ras-GTP intracellular levels, ERK activity, morphology, proliferative potential and anchorage independent growth. Fusion of the RasGRF1-derived peptides with the Tat protein transduction domain allows their uptake into mammalian cells. Chemically synthesized Tat-fused peptides, reduced to as small as 30 residues on the basis of structural constraints, retain Ras inhibitory activity. These small peptides interfere in vitro with the GEF catalyzed nucleotide dissociation and exchange on Ras, reduce cell proliferation of K-RAS transformed mouse fibroblasts, and strongly reduce Ras-dependent IGF-I-induced migration and invasion of human bladder cancer cells. These results support the use of RasGRF1-derived peptides as model compounds for the development of Ras inhibitory anticancer agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号