首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1144篇
  免费   97篇
  2023年   4篇
  2022年   13篇
  2021年   31篇
  2020年   12篇
  2019年   24篇
  2018年   27篇
  2017年   22篇
  2016年   53篇
  2015年   72篇
  2014年   69篇
  2013年   73篇
  2012年   128篇
  2011年   93篇
  2010年   66篇
  2009年   51篇
  2008年   70篇
  2007年   63篇
  2006年   48篇
  2005年   53篇
  2004年   55篇
  2003年   38篇
  2002年   43篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   8篇
  1997年   7篇
  1996年   11篇
  1995年   7篇
  1994年   18篇
  1993年   7篇
  1992年   7篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1985年   4篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1979年   2篇
  1976年   3篇
  1975年   1篇
  1974年   3篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1965年   1篇
排序方式: 共有1241条查询结果,搜索用时 15 毫秒
201.
To investigate the population structure of the predominant phylogenetic groups within the human adult fecal microbiota, a new oligonucleotide probe designated S-G-Clept-1240-a-A-18 was designed, validated, and used with a set of five 16S rRNA-targeted oligonucleotide probes. Application of the six probes to fecal samples from 27 human adults showed additivity of 70% of the total 16S rRNA detected by the bacterial domain probe. The Bacteroides group-specific probe accounted for 37% ± 16% of the total rRNA, while the enteric group probe accounted for less than 1%. Clostridium leptum subgroup and Clostridium coccoides group-specific probes accounted for 16% ± 7% and 14% ± 6%, respectively, while Bifidobacterium and Lactobacillus groups made up less than 2%.  相似文献   
202.
203.
204.
Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logP(ow) (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of > or =2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logP(ow) value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logP(ow) around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logP(ow) of aliphatic alcohols correlates with their toxic effects, as octanol (logP(ow) = 2.9) has more negative effects in P. putida cells than 1-nonanol (logP(ow) = 3.4) or 1-decanol (logP(ow) = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logP(ow) = 3.2) into 3-methylcatechol (logP(ow) = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation.  相似文献   
205.
Plant growth involves the coordinated distribution of carbon resources both towards structural components and towards storage compounds that assure a steady carbon supply over the complete diurnal cycle. We used 14CO2 labelling to track assimilated carbon in both source and sink tissues. Source tissues exhibit large variations in carbon allocation throughout the light period. The most prominent change was detected in partitioning towards starch, being low in the morning and more than double later in the day. Export into sink tissues showed reciprocal changes. Fewer and smaller changes in carbon allocation occurred in sink tissues where, in most respects, carbon was partitioned similarly, whether the sink leaf assimilated it through photosynthesis or imported it from source leaves. Mutants deficient in the production or remobilization of leaf starch exhibited major alterations in carbon allocation. Low‐starch mutants that suffer from carbon starvation at night allocated much more carbon into neutral sugars and had higher rates of export than the wild type, partly because of the reduced allocation into starch, but also because of reduced allocation into structural components. Moreover, mutants deficient in the plant's circadian system showed considerable changes in their carbon partitioning pattern suggesting control by the circadian clock.  相似文献   
206.
The aim of this study was to evaluate different molecular tools based on the 16S rRNA gene, internal transcribed spacer, and the rpo B gene to examine the bacterial populations present in juvenile rainbow trout intestines. DNA was extracted from both pooled intestinal samples and bacterial strains. Genes were PCR-amplified and analysed using both temporal temperature gradient gel electrophoresis (TTGE) and restriction fragment length polymorphism methods. Because of the high cultivability of the samples, representative bacterial strains were retrieved and we compared the profiles obtained from isolated bacteria with the profile of total bacteria from intestinal contents. Direct analysis based on rpo B-TTGE revealed a simple bacterial composition with two to four bands per sample, while the 16S rRNA gene-TTGE showed multiple bands and comigration for a few species. Sequencing of the 16S rRNA gene- and rpo B-TTGE bands revealed that the intestinal microbiota was dominated by Lactococcus lactis, Citrobacter gillenii, Kluyvera intermedia, Obesumbacterium proteus , and Shewanella marinus . In contrast to 16S rRNA gene-TTGE, rpo B-TTGE profiles derived from bacterial strains produced one band per species. Because the single-copy state of rpo B leads to a single band in TTGE, the rpo B gene is a promising molecular marker for investigating the bacterial community of the rainbow trout intestinal microbiota.  相似文献   
207.
Induced pluripotent stem cells (iPSCs) are adult somatic cells genetically reprogrammed to an embryonic stem cell‐like state. Notwithstanding their autologous origin and their potential to differentiate towards cells of all three germ layers, iPSC reprogramming is still affected by low efficiency. As dermal fibroblast is the most used human cell for reprogramming, we hypothesize that the variability in reprogramming is, at least partially, because of the skin fibroblasts used. Human dermal fibroblasts harvested from five different anatomical sites (neck, breast, arm, abdomen and thigh) were cultured and their morphology, proliferation, apoptotic rate, ability to migrate, expression of mesenchymal or epithelial markers, differentiation potential and production of growth factors were evaluated in vitro. Additionally, gene expression analysis was performed by real‐time PCR including genes typically expressed by mesenchymal cells. Finally, fibroblasts isolated from different anatomic sites were reprogrammed to iPSCs by integration‐free method. Intriguingly, while the morphology of fibroblasts derived from different anatomic sites differed only slightly, other features, known to affect cell reprogramming, varied greatly and in accordance with anatomic site of origin. Accordingly, difference also emerged in fibroblasts readiness to respond to reprogramming and ability to form colonies. Therefore, as fibroblasts derived from different anatomic sites preserve positional memory, it is of great importance to accurately evaluate and select dermal fibroblast population prior to induce reprogramming.  相似文献   
208.
Understanding the signal transduction systems governing invasion is fundamental for the design of therapeutic strategies against metastasis. Na(+)/H(+) exchanger regulatory factor (NHERF1) is a postsynaptic density 95/disc-large/zona occludens (PDZ) domain-containing protein that recruits membrane receptors/transporters and cytoplasmic signaling proteins into functional complexes. NHERF1 expression is altered in breast cancer, but its effective role in mammary carcinogenesis remains undefined. We report here that NHERF1 overexpression in human breast tumor biopsies is associated with metastatic progression, poor prognosis, and hypoxia-inducible factor-1alpha expression. In cultured tumor cells, hypoxia and serum deprivation increase NHERF1 expression, promote the formation of leading-edge pseudopodia, and redistribute NHERF1 to these pseudopodia. This pseudopodial localization of NHERF1 was verified in breast biopsies and in three-dimensional Matrigel culture. Furthermore, serum deprivation and hypoxia stimulate the Na(+)/H(+) exchanger, invasion, and activate a protein kinase A (PKA)-gated RhoA/p38 invasion signal module. Significantly, NHERF1 overexpression was sufficient to induce these morphological and functional changes, and it potentiated their induction by serum deprivation. Functional experiments with truncated and binding groove-mutated PDZ domain constructs demonstrated that NHERF1 regulates these processes through its PDZ2 domain. We conclude that NHERF1 overexpression enhances the invasive phenotype in breast cancer cells, both alone and in synergy with exposure to the tumor microenvironment, via the coordination of PKA-gated RhoA/p38 signaling.  相似文献   
209.
A complex formation between hemin and a congruous oligonucleotide not only greatly enhances the former’s peroxidative activity but also results in a biocatalyst (DNAzyme) with a novel specificity. Herein substrate, regio-, enantiomeric, and diastereomeric selectivities of heme, the DNAzyme, and the enzyme horseradish peroxidase are comparatively examined.  相似文献   
210.
This study was designed to investigate the potential differences between Spaniards and Ecuadorian Mestizo people regarding CYP2C8, CYP2C9, and CYP2C19 genetic polymorphisms. DNA from 282 Spaniard and 297 Ecuadorian subjects were analyzed by either a previously reported pyrosequencing method (CY2C8*3, CYP2C9*2, CYP2C9*3, CYP2C19*2 and CYP2C19*3) or a nested PCR technique (CYP2C19*17). Whereas CYP2C19*17 allele distribution was higher in Ecuadorians than in Spaniards (P < 0.001) and the frequency of CYP2C19*3 was similar in these two populations (P > 0.05), the other allelic variants were detected at significantly lower frequencies in Ecuadorians than in Spaniards (P < 0.05). According to the diplotype distributions, the prevalence of the presumed CYP2C9 and CYP2C8 extensive metabolizers was higher in Ecuadorians than in Spaniards (P < 0.05). Individuals genotyped CYP2C19*1/*17 and *17/*17 who were considered as ultrarapid metabolizers were overrepresented in Ecuadorians in relation to Spaniards (P < 0.001). By contrast, among Ecuadorians no poor metabolizers (PMs) of either CYP2C8 or CYP2C9 were found and only two individuals were CYP2C19 PMs. These data are compatible with a higher CYP2C8, CYP2C9, and CYP2C19 activity in Mestizo Ecuadorians as opposed to Spaniards, which could imply differences in dosage requirements for drugs metabolized by these cytochromes and should also be considered in allele-disease association studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号