首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1359篇
  免费   135篇
  2023年   5篇
  2022年   15篇
  2021年   37篇
  2020年   15篇
  2019年   30篇
  2018年   30篇
  2017年   26篇
  2016年   55篇
  2015年   82篇
  2014年   72篇
  2013年   83篇
  2012年   137篇
  2011年   109篇
  2010年   69篇
  2009年   59篇
  2008年   81篇
  2007年   71篇
  2006年   65篇
  2005年   63篇
  2004年   71篇
  2003年   52篇
  2002年   57篇
  2001年   14篇
  2000年   12篇
  1999年   15篇
  1998年   13篇
  1997年   16篇
  1996年   14篇
  1995年   13篇
  1994年   19篇
  1993年   8篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   7篇
  1979年   3篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
排序方式: 共有1494条查询结果,搜索用时 15 毫秒
951.
The presence of Burkholderia, Cupriavidus, and Ralstonia species in northeastern Mexico was investigated. An analysis of the root surrounding soil from different agricultural plants led to the isolation of Burkholderia and Cupriavidus species but no Ralstonia strains. Most Cupriavidus species were unknown and grouped into two clusters according to ARDRA profiles. The 16S rRNA sequence analysis showed that the Cupriavidus isolates were highly related among them and with different Cupriavidus species with validated names. However, SDS-PAGE profiles were distinct among the different ARDRA profiles and to other Cupriavidus species examined, suggesting new species in the genus. This shows that Cupriavidus is more widely associated with plants than previously appreciated. The BCC isolate was 99% similar to B. cenocepacia by recA sequence analysis. Additionally, most Cupriavidus strains from the two largest groups grew on media containing up to 0.1 mg/ml of copper, 10.0 mg/ml arsenic and 1.0 mg/ml zinc. Burkholderia strains grew on media containing up to 10.0 mg/ml zinc, 5.0 mg/ml arsenic and 0.1 mg/ml copper.  相似文献   
952.
Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. There is no vaccine available for Leishmania infections and conventional treatments are very toxic to the patients. Therefore, antileishmanial drugs are urgently needed. In this study we have analyzed the effects of essential oils from Lippia sidoides (LSEO) and its major compound thymol on the growth, viability and ultrastructure of Leishmania amazonensis. The essential oil and thymol showed significant activity against promastigote forms of L. amazonensis, with IC50/48 h of 44.38 and 19.47 μg/mL respectively. However, thymol showed toxicity against peritoneal macrophages and low selectivity against the promastigotes when compared with the crude LSEO. On the other hand, no cytotoxic effect was observed in macrophages treated with the crude essential oil. Incubation of L. amazonensis-infected macrophages with LSEO showed a marked reduction in amastigote survival within the macrophages. Significant morphological alterations as accumulation of large lipid droplets in the cytoplasm, disrupted membrane and wrinkled cells were usually seen in treated parasites. The LSEO's activity against both promastigote and the amstigote forms of L. amazonensis, together with its low toxicity to mammalian cells, point to LSEO as a promising agent for the treatment of cutaneous leishmaniasis.  相似文献   
953.
The aim was to assess heterosis in a set of 16 summer-squash hybrids, and evaluate the combining capacity of the respective parental lines, which differed as to the degree of parthenocarpy and resistance to PRSV-W (Papaya Ringspot Virus-Watermelon strain). The hybrids were obtained using a partial diallel cross design (4 × 4). The lines of parental group I were 1 = ABX-037G-77-03-05-01-01-bulk, 2 = ABX-037G-77-03-05-03-10-bulk, 3 = ABX-037G-77-03-05-01-04-bulk and 4 = ABX-037G-77-03-05-05-01-bulk, and of group II, 1' = ABX-037G-77-03-05-04-08-bulk, 2' = ABX-037G-77-03-05-02-11-bulk, 3' = Clarice and 4' = Caserta. The 16 hybrids and eight parental lines were evaluated for PRSV-W resistance, parthenocarpic expression and yield in randomized complete-block designs, with three replications. Parthenocarpy and the resistance to PRSV-W were rated by means of a scale from 1 to 5, where 1 = non-parthenocarpic or high resistance to PRSV-W, and 5 = parthenocarpic or high susceptibility to PRSV-W. Both additive and non-additive gene effects were important in the expression of parthenocarpy and resistance to PRSV-W. Whereas estimates of heterosis in parthenocarpy usually tended towards a higher degree, resistance to PRSV-W was towards higher susceptibility. At least one F(1) hybrid was identified with a satisfactory degree of parthenocarpy, resistance to PRSV-W and high fruit-yield.  相似文献   
954.
Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.Key words: forisome, P-protein, sieve element occlusion, phloem, wound sealing, gene family, Fabacea  相似文献   
955.
Current clinical protocols used for isolation and purification of mesenchymal stem cells (MSC) are based on long-term cultures starting with bone marrow (BM) mononuclear cells. Using a commercially available immunoselection kit for enrichment of MSC, we investigated whether culture of enriched BM-CD105+ cells could provide an adequate number of pure MSC in a short time for clinical use in the context of graft versus host disease and graft failure/rejection. We isolated a mean of 5.4 × 105 ± 0.9 × 105 CD105+ cells from 10 small volume (10–25 ml) BM samples achieving an enrichment >100-fold in MSC. Seeding 2 × 103 immunoselected cells/cm2 we were able to produce 2.5 × 108 ± 0.7 × 108 MSC from cultures with autologous serum enriched medium within 3 weeks. Neither haematopoietic nor endothelial cells were detectable even in the primary culture cell product. Expanded cells fulfilled both phenotypic and functional current criteria for MSC; they were CD29+, CD90+, CD73+, CD105+, CD45; they suppressed allogeneic T-cell reaction in mixed lymphocyte cultures and retained in vitro differentiation potential. Moreover, comparative genomic hybridization analysis revealed chromosomal stability of the cultured MSC. Our data indicate that adequate numbers of pure MSC suitable for clinical applications can be generated within a short time using enriched BM-CD105+ cells.  相似文献   
956.
Low temperature is an important environmental factor affecting the performance and distribution of plants. During the so-called process of cold acclimation, many plants are able to develop low-temperature tolerance, associated with the reprogramming of a large part of their metabolism. In this study, we present a systems biology approach based on mathematical modelling to determine interactions between the reprogramming of central carbohydrate metabolism and the development of freezing tolerance in two accessions of Arabidopsis thaliana. Different regulation strategies were observed for (a) photosynthesis, (b) soluble carbohydrate metabolism and (c) enzyme activities of central metabolite interconversions. Metabolism of the storage compound starch was found to be independent of accession-specific reprogramming of soluble sugar metabolism in the cold. Mathematical modelling and simulation of cold-induced metabolic reprogramming indicated major differences in the rates of interconversion between the pools of hexoses and sucrose, as well as the rate of assimilate export to sink organs. A comprehensive overview of interconversion rates is presented, from which accession-specific regulation strategies during exposure to low temperature can be derived. We propose this concept as a tool for predicting metabolic engineering strategies to optimize plant freezing tolerance. We confirm that a significant improvement in freezing tolerance in plants involves multiple regulatory instances in sucrose metabolism, and provide evidence for a pivotal role of sucrose-hexose interconversion in increasing the cold acclimation output.  相似文献   
957.
Tumor-initiating cells (T-ICs) are a subpopulation of chemoresistant tumor cells that have been shown to cause tumor recurrence upon chemotherapy. Identification of T-ICs and their related pathways are therefore priorities for the development of new therapeutic paradigms. We established chemoresistant hepatocellular carcinoma (HCC) xenograft tumors in immunocompromised mice in which an enriched T-IC population was capable of tumor initiation and self-renewal. With this model, we found CD24 to be upregulated in residual chemoresistant tumors when compared with bulk tumor upon cisplatin treatment. CD24(+) HCC cells were found to be critical for the maintenance, self-renewal, differentiation, and metastasis of tumors and to significantly impact patients' clinical outcome. With a lentiviral-based knockdown approach, CD24 was found to be a functional liver T-IC marker that drives T-IC genesis through STAT3-mediated NANOG regulation. Our findings point to a CD24 cascade in liver T-ICs that may provide an attractive therapeutic target for HCC patients.  相似文献   
958.
Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD(+)-independent HDACs are an established therapeutic target, the relevance of NAD(+)-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+)-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+) levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+)-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.  相似文献   
959.
Bisphosphonates suppress bone remodeling activity, increase bone volume, and significantly reduce fracture risk in individuals with osteoporosis and other metabolic bone diseases. The objectives of the current study were to develop a mathematical model that simulates control and 1 year experimental results following bisphosphonate treatment (alendronate or risedronate) in the canine fourth lumbar vertebral body, validate the model by comparing simulation predictions to 3 year experimental results, and then use the model to predict potential long term effects of bisphosphonates on remodeling and microdamage accumulation. To investigate the effects of bisphosphonates on bone volume and microdamage, a mechanistic biological model was modified from previous versions to simulate remodeling in a representative volume of vertebral trabecular bone in dogs treated with various doses of alendronate or risedronate, including doses equivalent to those used for treatment of post-menopausal osteoporosis in humans. Bisphosphonates were assumed to affect remodeling by suppressing basic multicellular unit activation and reducing resorption area. Model simulation results for trabecular bone volume fraction, microdamage, and activation frequency following 1 year of bisphosphonate treatment are consistent with experimental measurements. The model predicts that trabecular bone volume initially increases rapidly with 1 year of bisphosphonate treatment, and continues to slowly rise between 1 and 3 years of treatment. The model also predicts that microdamage initially increases rapidly, 0.5–1.5-fold for alendronate or risedronate during the first year of treatment, and reaches its maximum value by 2.5 years before trending downward for all dosages. The model developed in this study suggests that increasing bone volume fraction with long term bisphosphonate treatment may sufficiently reduce strain and damage formation rate so that microdamage does not accumulate above that which is initiated in the first two years of treatment.  相似文献   
960.
Galectins have been implicated in T cell homeostasis playing complementary pro-apoptotic roles. Here we show that galectin-8 (Gal-8) is a potent pro-apoptotic agent in Jurkat T cells inducing a complex phospholipase D/phosphatidic acid signaling pathway that has not been reported for any galectin before. Gal-8 increases phosphatidic signaling, which enhances the activity of both ERK1/2 and type 4 phosphodiesterases (PDE4), with a subsequent decrease in basal protein kinase A activity. Strikingly, rolipram inhibition of PDE4 decreases ERK1/2 activity. Thus Gal-8-induced PDE4 activation releases a negative influence of cAMP/protein kinase A on ERK1/2. The resulting strong ERK1/2 activation leads to expression of the death factor Fas ligand and caspase-mediated apoptosis. Several conditions that decrease ERK1/2 activity also decrease apoptosis, such as anti-Fas ligand blocking antibodies. In addition, experiments with freshly isolated human peripheral blood mononuclear cells, previously stimulated with anti-CD3 and anti-CD28, show that Gal-8 is pro-apoptotic on activated T cells, most likely on a subpopulation of them. Anti-Gal-8 autoantibodies from patients with systemic lupus erythematosus block the apoptotic effect of Gal-8. These results implicate Gal-8 as a novel T cell suppressive factor, which can be counterbalanced by function-blocking autoantibodies in autoimmunity.Glycan-binding proteins of the galectin family have been increasingly studied as regulators of the immune response and potential therapeutic agents for autoimmune disorders (1). To date, 15 galectins have been identified and classified according with the structural organization of their distinctive monomeric or dimeric carbohydrate recognition domain for β-galactosides (2, 3). Galectins are secreted by unconventional mechanisms and once outside the cells bind to and cross-link multiple glycoconjugates both at the cell surface and at the extracellular matrix, modulating processes as diverse as cell adhesion, migration, proliferation, differentiation, and apoptosis (410). Several galectins have been involved in T cell homeostasis because of their capability to kill thymocytes, activated T cells, and T cell lines (1116). Pro-apoptotic galectins might contribute to shape the T cell repertoire in the thymus by negative selection, restrict the immune response by eliminating activated T cells at the periphery (1), and help cancer cells to escape the immune system by eliminating cancer-infiltrating T cells (17). They have also a promising therapeutic potential to eliminate abnormally activated T cells and inflammatory cells (1). Studies on the mostly explored galectins, Gal-1, -3, and -9 (14, 15, 1820), as well as in Gal-2 (13), suggest immunosuppressive complementary roles inducing different pathways to apoptosis. Galectin-8 (Gal-8)4 is one of the most widely expressed galectins in human tissues (21, 22) and cancerous cells (23, 24). Depending on the cell context and mode of presentation, either as soluble stimulus or extracellular matrix, Gal-8 can promote cell adhesion, spreading, growth, and apoptosis (6, 7, 9, 10, 22, 25). Its role has been mostly studied in relation to tumor malignancy (23, 24). However, there is some evidence regarding a role for Gal-8 in T cell homeostasis and autoimmune or inflammatory disorders. For instance, the intrathymic expression and pro-apoptotic effect of Gal-8 upon CD4highCD8high thymocytes suggest a role for Gal-8 in shaping the T cell repertoire (16). Gal-8 could also modulate the inflammatory function of neutrophils (26), Moreover Gal-8-blocking agents have been detected in chronic autoimmune disorders (10, 27, 28). In rheumatoid arthritis, Gal-8 has an anti-inflammatory action, promoting apoptosis of synovial fluid cells, but can be counteracted by a specific rheumatoid version of CD44 (CD44vRA) (27). In systemic lupus erythematosus (SLE), a prototypic autoimmune disease, we recently described function-blocking autoantibodies against Gal-8 (10, 28). Thus it is important to define the role of Gal-8 and the influence of anti-Gal-8 autoantibodies in immune cells.In Jurkat T cells, we previously reported that Gal-8 interacts with specific integrins, such as α1β1, α3β1, and α5β1 but not α4β1, and as a matrix protein promotes cell adhesion and asymmetric spreading through activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) (10). These early effects occur within 5–30 min. However, ERK1/2 signaling supports long term processes such as T cell survival or death, depending on the moment of the immune response. During T cell activation, ERK1/2 contributes to enhance the expression of interleukin-2 (IL-2) required for T cell clonal expansion (29). It also supports T cell survival against pro-apoptotic Fas ligand (FasL) produced by themselves and by other previously activated T cells (30, 31). Later on, ERK1/2 is required for activation-induced cell death, which controls the extension of the immune response by eliminating recently activated and restimulated T cells (32, 33). In activation-induced cell death, ERK1/2 signaling contributes to enhance the expression of FasL and its receptor Fas/CD95 (32, 33), which constitute a preponderant pro-apoptotic system in T cells (34). Here, we ask whether Gal-8 is able to modulate the intensity of ERK1/2 signaling enough to participate in long term processes involved in T cell homeostasis.The functional integration of ERK1/2 and PKA signaling (35) deserves special attention. cAMP/PKA signaling plays an immunosuppressive role in T cells (36) and is altered in SLE (37). Phosphodiesterases (PDEs) that degrade cAMP release the immunosuppressive action of cAMP/PKA during T cell activation (38, 39). PKA has been described to control the activity of ERK1/2 either positively or negatively in different cells and processes (35). A little explored integration among ERK1/2 and PKA occurs via phosphatidic acid (PA) and PDE signaling. Several stimuli activate phospholipase D (PLD) that hydrolyzes phosphatidylcholine into PA and choline. Such PLD-generated PA plays roles in signaling interacting with a variety of targeting proteins that bear PA-binding domains (40). In this way PA recruits Raf-1 to the plasma membrane (41). It is also converted by phosphatidic acid phosphohydrolase (PAP) activity into diacylglycerol (DAG), which among other functions, recruits and activates the GTPase Ras (42). Both Ras and Raf-1 are upstream elements of the ERK1/2 activation pathway (43). In addition, PA binds to and activates PDEs of the type 4 subfamily (PDE4s) leading to decreased cAMP levels and PKA down-regulation (44). The regulation and role of PA-mediated control of ERK1/2 and PKA remain relatively unknown in T cell homeostasis, because it is also unknown whether galectins stimulate the PLD/PA pathway.Here we found that Gal-8 induces apoptosis in Jurkat T cells by triggering cross-talk between PKA and ERK1/2 pathways mediated by PLD-generated PA. Our results for the first time show that a galectin increases the PA levels, down-regulates the cAMP/PKA system by enhancing rolipram-sensitive PDE activity, and induces an ERK1/2-dependent expression of the pro-apoptotic factor FasL. The enhanced PDE activity induced by Gal-8 is required for the activation of ERK1/2 that finally leads to apoptosis. Gal-8 also induces apoptosis in human peripheral blood mononuclear cells (PBMC), especially after activating T cells with anti-CD3/CD28. Therefore, Gal-8 shares with other galectins the property of killing activated T cells contributing to the T cell homeostasis. The pathway involves a particularly integrated signaling context, engaging PLD/PA, cAMP/PKA, and ERK1/2, which so far has not been reported for galectins. The pro-apoptotic function of Gal-8 also seems to be unique in its susceptibility to inhibition by anti-Gal-8 autoantibodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号