首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3214篇
  免费   218篇
  2023年   10篇
  2022年   37篇
  2021年   62篇
  2020年   42篇
  2019年   72篇
  2018年   71篇
  2017年   72篇
  2016年   110篇
  2015年   172篇
  2014年   179篇
  2013年   237篇
  2012年   259篇
  2011年   228篇
  2010年   160篇
  2009年   146篇
  2008年   203篇
  2007年   200篇
  2006年   164篇
  2005年   151篇
  2004年   142篇
  2003年   123篇
  2002年   137篇
  2001年   29篇
  2000年   27篇
  1999年   26篇
  1998年   35篇
  1997年   29篇
  1996年   20篇
  1995年   28篇
  1994年   27篇
  1993年   23篇
  1992年   19篇
  1991年   15篇
  1990年   19篇
  1989年   14篇
  1988年   26篇
  1987年   10篇
  1986年   15篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1980年   7篇
  1978年   6篇
  1977年   5篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
  1971年   4篇
  1970年   5篇
排序方式: 共有3432条查询结果,搜索用时 375 毫秒
61.
Following the report of Silverman and Podger (1964) that pepsin formed an association with larval receptor sites on D. viviparus and that exsheathment had an absolute requirement for pepsin, the role of pepsin was studied in greater detail. A range of enzyme incubation, pepsin labeling, histochemical and electron microscopical techniques were used. Pepsin did cause exsheathment of D. viviparus but, it was not an absolute requirement. Exsheathment occurred in a range of proteolytic enzymes each at its optimum pH. Findings suggest that the area of weakness around the anterior end of the larvae is digested by external protease and that, in vivo, exsheathment is caused by the gut enzymes of the host.  相似文献   
62.
From the aerial parts of Scutellaria hastifolia, family Lamiaceae (Labiatae), seven neo-clerodane diterpenoids (hastifolins A–G) were isolated. The products are similar to the known scuteparvin and are characterized by being trans-cinnamoyl derivatives. Structures and stereochemistry were determined by intensive NMR investigation. Six of the products form three pairs of epimers at C-13. Hastifolins A–C showed significant antifeedant activity.  相似文献   
63.
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 μatm) or future CO2 levels predicted for the year 2100 (900 μatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2. High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.  相似文献   
64.
Babesia caballi and Theileria equi are widely recognized as causative agents of equine pirolasmosis (EP), an acute, sub‐acute, and chronic disease of equines, with relevant economic impact on horse trade worldwide. Although several studies on EP prevalence from central Italy have been published, data on ticks responsible for its transmission are still lacking. In this study, we identified a potential competent vector, investigating main features of its ecology together with EP infection rates. A two‐year sampling of questing ticks was carried out for the first time in Italy in an area known for high EP prevalence in horse sera, detecting the association between Rhipicephalus bursa and causative agents of EP. Most of the positive pools harbored a single infection (91.1%); mixed infections were also detected (8.9%). The infection rate for T. equi slightly decreased among years; B. caballi showed a lower, but increasing, infection rate. Tick phenology, climate variables, and peaks of EP prevalence indicated late May and second half of June as periods with the highest risk of new infections, especially during warm and dry days.  相似文献   
65.
Crop residue exploitation for bioenergy can play an important role in climate change mitigation without jeopardizing food security, but it may be constrained by impacts on soil organic carbon (SOC) stocks, and market, logistic and conversion challenges. We explore opportunities to increase bioenergy potentials from residues while reducing environmental impacts, in line with sustainable intensification. Using the case study of North Rhine‐Westphalia in Germany, we employ a spatiotemporally explicit approach combined with stakeholder interviews. First, the interviews identify agronomic and environmental impacts due to the potential reduction in SOC as the most critical challenge associated with enhanced crop residue exploitation. Market and technological challenges and competition with other residue uses are also identified as significant barriers. Second, with the use of agroecosystem modelling and estimations of bioenergy potentials and greenhouse gas emissions till mid‐century, we evaluate the ability of agricultural management to tackle the identified agronomic and environmental challenges. Integrated site‐specific management based on (a) humus balancing, (b) optimized fertilization and (c) winter soil cover performs better than our reference scenario with respect to all investigated variables. At the regional level, we estimate (a) a 5% increase in technical residue potentials and displaced emissions from substituting fossil fuels by bioethanol, (b) an 8% decrease in SOC losses and associated emissions, (c) an 18% decrease in nitrous oxide emissions, (d) a 37% decrease in mineral fertilizer requirements and emissions from their production and (e) a 16% decrease in nitrate leaching. Results are spatially variable and, despite improvements induced by management, limited amounts of crop residues are exploitable for bioenergy in areas prone to SOC decline. In order to sustainably intensify crop residue exploitation for bioenergy and reconcile climate change mitigation with other sustainability objectives, such as those on soil and water quality, residue management needs to be designed in an integrated and site‐specific manner.  相似文献   
66.
67.
68.

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T?>?G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T?>?G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.

  相似文献   
69.
The S9.6 antibody is broadly used to detect RNA:DNA hybrids but has significant affinity for double-stranded RNA. The impact of this off-target RNA binding activity has not been thoroughly investigated, especially in the context of immunofluorescence microscopy. We report that S9.6 immunofluorescence signal observed in fixed human cells arises predominantly from ribosomal RNA, not RNA:DNA hybrids. S9.6 staining was unchanged by pretreatment with the RNA:DNA hybrid–specific nuclease RNase H1, despite verification in situ that S9.6 recognized RNA:DNA hybrids and that RNase H1 was active. S9.6 staining was, however, significantly sensitive to RNase T1, which specifically degrades RNA. Additional imaging and biochemical data indicate that the prominent cytoplasmic and nucleolar S9.6 signal primarily derives from ribosomal RNA. Importantly, genome-wide maps obtained by DNA sequencing after S9.6-mediated DNA:RNA immunoprecipitation (DRIP) are RNase H1 sensitive and RNase T1 insensitive. Altogether, these data demonstrate that imaging using S9.6 is subject to pervasive artifacts without pretreatments and controls that mitigate its promiscuous recognition of cellular RNAs.  相似文献   
70.
Therapies that utilize immune checkpoint inhibition work by leveraging mutation-derived neoantigens and have shown greater clinical efficacy in tumors with higher mutational burden. Whether tumors with a low mutational burden are susceptible to neoantigen-targeted therapy has not been fully addressed. To examine the feasibility of neoantigen-specific adoptive T-cell therapy, the authors studied the T-cell response against somatic variants in five patients with myelodysplastic syndrome (MDS), a malignancy with a very low tumor mutational burden. DNA and RNA from tumor (CD34+) and normal (CD3+) cells isolated from the patients’ blood were sequenced to predict patient-specific MDS neopeptides. Neopeptides representing the somatic variants were used to induce and expand autologous T cells ex vivo, and these were systematically tested in killing assays to determine the proportion of neopeptides yielding neoantigen-specific T cells. The authors identified a total of 32 somatic variants (four to eight per patient) and found that 21 (66%) induced a peptide-specific T-cell response and 19 (59%) induced a T-cell response capable of killing autologous tumor cells. Of the 32 somatic variants, 11 (34%) induced a CD4+ response and 11 (34%) induced a CD8+ response that killed the tumor. These results indicate that in vitro induction of neoantigen-specific T cells is feasible for tumors with very low mutational burden and that this approach warrants investigation as a therapeutic option for such patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号