首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2410篇
  免费   251篇
  国内免费   1篇
  2662篇
  2023年   20篇
  2022年   32篇
  2021年   75篇
  2020年   58篇
  2019年   52篇
  2018年   54篇
  2017年   59篇
  2016年   86篇
  2015年   137篇
  2014年   149篇
  2013年   165篇
  2012年   197篇
  2011年   183篇
  2010年   108篇
  2009年   108篇
  2008年   142篇
  2007年   118篇
  2006年   115篇
  2005年   112篇
  2004年   89篇
  2003年   105篇
  2002年   87篇
  2001年   28篇
  2000年   20篇
  1999年   17篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   16篇
  1994年   10篇
  1993年   8篇
  1992年   16篇
  1991年   14篇
  1990年   13篇
  1989年   12篇
  1988年   7篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   17篇
  1981年   10篇
  1980年   12篇
  1978年   10篇
  1974年   8篇
  1880年   4篇
  1879年   6篇
  1878年   14篇
  1877年   14篇
  1876年   13篇
  1875年   5篇
排序方式: 共有2662条查询结果,搜索用时 31 毫秒
121.
The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.  相似文献   
122.

Background

Membrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation.

Methodology/Principal Findings

Anionic calix[4]arene based detergents (C4Cn, n = 1–12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5–24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein.

Conclusion/Significance

These compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may contribute to the membrane protein crystallization field.  相似文献   
123.
124.
The variation of amino acid substitution rates in proteins depends on several variables. Among these, the protein's expression level, functional category, essentiality, or metabolic costs of its amino acid residues may play an important role. However, the relative importance of each variable has not yet been evaluated in comparative analyses. To this aim, we made regression analyses combining data available on these variables and on evolutionary rates, in two well-documented model bacteria, Escherichia coli and Bacillus subtilis. In both bacteria, the level of expression of the protein in the cell was by far the most important driving force constraining the amino acids substitution rate. Subsequent inclusion in the analysis of the other variables added little further information. Furthermore, when the rates of synonymous substitutions were included in the analysis of the E. coli data, only the variable expression levels remained statistically significant. The rate of nonsynonymous substitution was shown to correlate with expression levels independently of the rate of synonymous substitution. These results suggest an important direct influence of expression levels, or at least codon usage bias for translation optimization, on the rates of nonsynonymous substitutions in bacteria. They also indicate that when a control for this variable is included, essentiality plays no significant role in the rate of protein evolution in bacteria, as is the case in eukaryotes.  相似文献   
125.
Structural protein requirements in equine arteritis virus assembly   总被引:1,自引:0,他引:1       下载免费PDF全文
Equine arteritis virus (EAV) is an enveloped, positive-stranded RNA virus belonging to the family Arteriviridae of the order Nidovirales. EAV particles contain seven structural proteins: the nucleocapsid protein N, the unglycosylated envelope proteins M and E, and the N-glycosylated membrane proteins GP(2b) (previously named G(S)), GP(3), GP(4), and GP(5) (previously named G(L)). Proteins N, M, and GP(5) are major virion components, E occurs in virus particles in intermediate amounts, and GP(4), GP(3), and GP(2b) are minor structural proteins. The M and GP(5) proteins occur in virus particles as disulfide-linked heterodimers while the GP(4), GP(3), and GP(2b) proteins are incorporated into virions as a heterotrimeric complex. Here, we studied the effect on virus assembly of inactivating the structural protein genes one by one in the context of a (full-length) EAV cDNA clone. It appeared that the three major structural proteins are essential for particle formation, while the other four virion proteins are dispensable. When one of the GP(2b), GP(3), or GP(4) proteins was missing, the incorporation of the remaining two minor envelope glycoproteins was completely blocked while that of the E protein was greatly reduced. The absence of E entirely prevented the incorporation of the GP(2b), GP(3), and GP(4) proteins into viral particles. EAV particles lacking GP(2b), GP(3), GP(4), and E did not markedly differ from wild-type virions in buoyant density, major structural protein composition, electron microscopic appearance, and genomic RNA content. On the basis of these results, we propose a model for the EAV particle in which the GP(2b)/GP(3)/GP(4) heterotrimers are positioned, in association with a defined number of E molecules, above the vertices of the putatively icosahedral nucleocapsid.  相似文献   
126.
Ectomycorrhizae are formed by mutualistic interactions between fungi and the roots of woody plants. During symbiosis the two organisms exchange carbon and nutrients in a specific tissue that is formed at the contact between a compatible fungus and plant. There is considerable variation in the degree of host specificity among species and strains of ectomycorrhizal fungi. In this study, we have for the first time shown that this variation is associated with quantitative differences in gene expression, and with divergence in nucleotide sequences of symbiosis-regulated genes. Gene expression and sequence evolution were compared in different strains of the ectomycorrhizal fungus Paxillus involutus; the strains included Nau, which is not compatible with birch and poplar, and the two compatible strains Maj and ATCC200175. On a genomic level, Nau and Maj were very similar. The sequence identity was 98.9% in the 16 loci analysed, and only three out of 1075 genes analysed by microarray-based hybridizations had signals indicating differences in gene copy numbers. In contrast, 66 out of the 1075 genes were differentially expressed in Maj compared to Nau after contact with birch roots. Thirty-seven of these symbiosis-regulated genes were also differentially expressed in the ATCC strain. Comparative analysis of DNA sequences of the symbiosis-regulated genes in different strains showed that two of them have evolved at an enhanced rate in Nau. The sequence divergence can be explained by a decreased selection pressure, which in turn is determined by lower functional constraints on these proteins in Nau as compared to the compatible strains.  相似文献   
127.
Rhinocerotids were abundant and diverse in southern Asia during the Pleistocene and the Holocene epochs, as shown by palaeontological and archaeological discoveries published throughout the last century, whereas the only living rhinoceros in the Indochinese Peninsula is Rhinoceros sondaicus (Cat Loc Reserve, Vietnam). The Pleistocene-Holocene Indochinese rhinocerotid record consists of the extinct species Dicerorhinus gwebinensis (Early Pleistocene, Myanmar) and representatives of the Recent Asian Species Rhinoceros unicornis (Middle-Late Pleistocene), R. sondaicus (Middle Pleistocene-Recent), and Dicerorhinus sumatrensis (Middle Pleistocene-Holocene). This fossil record is synthesized, mapped for Early/Middle/Late Pleistocene and Holocene/Recent times, and then compared with coeval rhinocerotid assemblages from the adjacent areas (South China), subregions (Indian, Sundaic, Philippine, and Wallacean), and region (Palearctic), from a biochronological and biogeographical perspective.  相似文献   
128.

Backgrounds and aims

In Mediterranean frequently burnt areas, the decrease of soil fertility leads to regressive vegetation dynamics. Organic amendments could help to accelerate post-fire ecosystem resilience, by improving soil properties and plant nutrition. This study was conducted to assess the potential of a composted biosolid to restore an early post-fire shrubland.

Methods

About 50 Mg.ha?1 of fresh co-composted sewage sludge and green wastes were surface applied 7 months after fire on a silty-clayey soil. We monitored over a 2-year period organic matter and nutrient transfers to soil, nutrient responses of dominant plant species, and ecosystem contamination by potentially toxic trace elements.

Results

Over the experimental survey, compost rapidly and durably improved soil P2O5, MgO and K2O content, and temporarily increased N-(NO3 ? + NO2 ?) content. Plant nutrition was improved more or less durably depending species. The most positive compost effect was on plant and soil phosphorus content. Plant nutrient storage was not improved 2 years after amendment, suggesting luxury consumption. No contamination by trace elements was detected in soil and plant.

Conclusions

The use of compost after fire could help for rapidly restoring soil fertility and improving plant nutrition. The increase of soil nutrient pools after amendment emphazised the diversity of plant nutritional traits. Eutrophication risk could occur from high compost and soil P2O5 content.  相似文献   
129.
Partitioning of the carbon (C) fixed during photosynthesis between neutral lipids (NL) and carbohydrates was investigated in Isochrysis sp. (Haptophyceae) in relation to its nitrogen (N) status. Using batch and nitrate‐limited continuous cultures, we studied the response of these energy reserve pools to both conditions of N starvation and limitation. During N starvation, NL and carbohydrate quotas increased but their specific growth rates (specific rates of variation, μCAR and μNL) decreased. When cells were successively deprived and then resupplied with NO3, both carbohydrates and neutral lipids were inversely related to the N quota (N:C). These negative relationships were not identical during N impoverishment and replenishment, indicating a hysteresis phenomenon between N and C reserve mobilizations. Cells acclimated to increasing degrees of N limitation in steady‐state chemostat cultures showed decreasing NL quota and increasing carbohydrate quota. N starvation led to a visible but only transient increase of NL productivity. In continuous cultures, the highest NL productivity was obtained for the highest experimented dilution rate (D = 1.0 d?1; i.e., for non N‐limited growth conditions), whereas the highest carbohydrate productivity was obtained at D = 0.67 d?1. We used these results to discuss the nitrogen conditions that optimize NL productivities in the context of biofuel production.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号