首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2453篇
  免费   252篇
  国内免费   1篇
  2023年   17篇
  2022年   32篇
  2021年   74篇
  2020年   58篇
  2019年   52篇
  2018年   53篇
  2017年   58篇
  2016年   85篇
  2015年   136篇
  2014年   154篇
  2013年   166篇
  2012年   199篇
  2011年   185篇
  2010年   112篇
  2009年   114篇
  2008年   149篇
  2007年   122篇
  2006年   124篇
  2005年   120篇
  2004年   94篇
  2003年   106篇
  2002年   88篇
  2001年   32篇
  2000年   24篇
  1999年   18篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   16篇
  1994年   10篇
  1993年   8篇
  1992年   17篇
  1991年   14篇
  1990年   10篇
  1989年   12篇
  1988年   7篇
  1987年   16篇
  1986年   9篇
  1985年   11篇
  1984年   19篇
  1983年   5篇
  1981年   8篇
  1980年   11篇
  1978年   9篇
  1974年   8篇
  1879年   6篇
  1878年   14篇
  1877年   14篇
  1876年   13篇
  1875年   5篇
排序方式: 共有2706条查询结果,搜索用时 31 毫秒
171.
172.
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.  相似文献   
173.
Lipoproteins transport lipids in the circulation of an evolutionally wide diversity of animals. The pathway for lipoprotein biogenesis has been revealed to a large extent in mammals only, in which apolipoprotein B (apoB) acquires lipids via the assistance of microsomal triglyceride transfer protein (MTP) and binds them by means of amphipathic protein structures. To investigate whether this is a common mechanism for lipoprotein biogenesis in animals, we studied the structural elements involved in the assembly of the insect lipoprotein, lipophorin. LOCATE sequence analysis predicted that the insect lipoprotein precursor, apolipophorin II/I (apoLp-II/I), contains clusters of amphipathic alpha-helices and beta-strands, organized along the protein as N-alpha(1)-beta-alpha(2)-C, reminiscent of a truncated form of apoB. Recombinant expression of a series of C-terminal truncation variants of Locusta migratoria apoLp-II/I in an insect cell (Sf9) expression system revealed that the formation of a buoyant high density lipoprotein requires the amphipathic beta cluster. Coexpression of apoLp-II/I with the MTP homolog of Drosophila melanogaster affected insect lipoprotein biogenesis quantitatively as well as qualitatively, as the secretion of apoLp-II/I proteins was increased several-fold and the buoyant density of the secreted lipoprotein decreased concomitantly, indicative of augmented lipidation. Based on these findings, we propose that, despite specific modifications, the assembly of lipoproteins involves MTP as well as amphipathic structures in the apolipoprotein carrier, both in mammals and insects. Thus, lipoprotein biogenesis in animals appears to rely on structural elements that are of early metazoan origin.  相似文献   
174.
The Alphavirus Sindbis 6K protein is involved in several functions. It contributes to the processing and membrane insertion of E1 and PE2 viral envelope glycoproteins and to virus budding. It also permeabilizes Escherichia coli and mammalian cells. These viroporin-like properties have been proposed to help virus budding by modifying membrane permeabilities. We expressed Sindbis virus 6K cRNA in Xenopus oocytes to further characterize the effect of 6K on membrane conductances and permeabilization. Although no intrinsic channel properties were seen, cell shrinkage was observed within 24 h. Voltage-clamp experiments showed that 6K upregulated endogenous currents: a hyperpolarization-activated inward current (I in) and a calcium-dependent chloride current (I Cl). 6K was located at both the plasma and the endoplasmic reticulum membranes. The plasma membrane current upregulation likely results from disruption of the calcium homeostasis of the cell at the endoplasmic reticulum level. Indeed, 6K cRNA expression induced reticular calcium store depletion and capacitative calcium entry activation. By experimental modifications of the incubation medium, we showed that downstream of these events cell shrinkage resulted from a 6K -induced KCl efflux (I Cl upregulation leads to chloride efflux, which itself electrically drives potassium efflux), which was responsible for an osmotic water efflux. Our data confirm that 6K specifically triggers a sequential cascade of events that leads to cytoplasmic calcium elevation and cell permeabilization, which likely play a role in the Sindbis virus life cycle.  相似文献   
175.
Methionine sulfoxide reductases (Msrs) are ubiquitous enzymes that catalyze the thioredoxin-dependent reduction of methionine sulfoxide (MetSO) back to methionine. In vivo, Msrs are essential in protecting cells against oxidative damages on proteins and in the virulence of some bacteria. There exists two structurally unrelated classes of Msrs. MsrAs are stereo-specific toward the S epimer on the sulfur of the sulfoxide, whereas MsrBs are specific toward the R isomer. Both classes of Msrs display a similar catalytic mechanism of sulfoxide reduction by thiols via the sulfenic acid chemistry and a better affinity for protein-bound MetSO than for free MetSO. Recently, the role of the amino acids implicated in the catalysis of the reductase step of Neisseria meningitidis MsrA was determined. In the present study, the invariant amino acids potentially involved in substrate binding, i.e. Phe-52, Trp-53, Asp-129, His-186, Tyr-189, and Tyr-197, were substituted. The catalytic parameters under steady-state conditions and of the reductase step of the mutated MsrAs were determined and compared with those of the wild type. Altogether, the results support the presence of at least two binding subsites. The first one, whose contribution is major in the efficiency of the reductase step and in which the epsilon-methyl group of MetSO binds, is the hydrophobic pocket formed by Phe-52 and Trp-53, the position of the indole ring being stabilized by interactions with His-186 and Tyr-189. The second subsite composed of Asp-129 and Tyr-197 contributes to the binding of the main chain of the substrate but to a lesser extent.  相似文献   
176.
177.
178.
179.
The decrease of melatonin production with aging contributes to the decline in immune function as organisms age. Treatment with the exogenously administered indoleamine restores the reduced immunological functions. Therefore, we investigated the effect of melatonin on viability, phagocyte ingestion capacity, and free radical generation levels of heterophils from young and old ringdove (Streptopelia risoria) aged 3–4 and 11–13 years, respectively. Animals received a single oral dose of melatonin 1 h before lights off for three consecutive days. Experiments were performed at the acrophases and nadirs of melatonin. Melatonin treatment significantly increased serum melatonin levels at the acrophases, but not at the nadirs of the two age groups. In both young and old animals there was increased heterophil viability at acrophases with respect to nadirs, and also increased cell resistance to oxidative stress in the old animals after the melatonin treatment. At acrophases, the index, percentage and efficiency of phagocytosis all increased significantly, and superoxide anion levels decreased significantly with respect to the nadir values of vehicle and melatonin-treated animals, the effect being greater in young than in old ringdoves. At the nadirs, no change was observed in any parameter analyzed. In both young and old animals, phagocytosis and melatonin were positively correlated, while superoxide anion levels and melatonin were negatively correlated. In conclusion, exogenous melatonin enhanced heterophil viability in old animals as well as increasing phagocytosis and free-radical scavenging in both age groups during the nocturnal period, accompanied by an increase in the levels of the indoleamine.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号