首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2367篇
  免费   248篇
  国内免费   1篇
  2616篇
  2023年   21篇
  2022年   32篇
  2021年   74篇
  2020年   58篇
  2019年   52篇
  2018年   53篇
  2017年   58篇
  2016年   85篇
  2015年   136篇
  2014年   150篇
  2013年   165篇
  2012年   195篇
  2011年   181篇
  2010年   109篇
  2009年   108篇
  2008年   141篇
  2007年   115篇
  2006年   115篇
  2005年   110篇
  2004年   88篇
  2003年   103篇
  2002年   85篇
  2001年   30篇
  2000年   20篇
  1999年   16篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   16篇
  1994年   10篇
  1993年   8篇
  1992年   16篇
  1991年   14篇
  1990年   10篇
  1989年   11篇
  1988年   6篇
  1987年   12篇
  1986年   8篇
  1985年   9篇
  1984年   16篇
  1981年   8篇
  1980年   11篇
  1978年   9篇
  1974年   8篇
  1880年   4篇
  1879年   6篇
  1878年   14篇
  1877年   14篇
  1876年   13篇
  1875年   5篇
排序方式: 共有2616条查询结果,搜索用时 15 毫秒
71.
We introduce a sequential rewriting strategy for P systems based on Gillespie's stochastic simulation algorithm, and show that the resulting formalism of stochastic P systems makes it possible to simulate biochemical processes in dynamically changing, nested compartments. Stochastic P systems have been implemented using the spatially explicit programming language MGS. Implementation examples include models of the Lotka-Volterra auto-catalytic system, and the life cycle of the Semliki Forest virus.  相似文献   
72.
Sea urchin is a classical research model system in developmental biology; moreover, the external fertilization and growth of embryos, their rapid division cycle, their transparency and the accessibility of these embryos to molecular visualization methods, made them good specimens to analyze the regulatory mechanisms of cell division. These features as well as the phylogenetic position of sea urchin, close to vertebrates but in an outgroup within the deuterostomes, led scientists working on this model to sequence the genome of the species S. purpuratus. The genome contains a full repertoire of cell cycle control genes. A comparison of this toolkit with those from vertebrates, nematodes, drosophila, as well as tunicates, provides new insight into the evolution of cell cycle control. While some gene subtypes have undergone lineage-specific expansions in vertebrates (i.e. cyclins, mitotic kinases,...), others seem to be lost in vertebrates, for instance the novel cyclin B identified in S. purpuratus. On the other hand, some genes which were previously thought to be vertebrate innovations, are also found in sea urchins (i.e. MCM9). To note is also the absence of cell cycle inhibitors of the INK type, which are apparently confined to vertebrates. The uncovered genomic repertoire of cell-cycle regulators will thus provide molecular tools that should further enhance future research on cell cycle control and developmental regulation in this model.  相似文献   
73.
Pure natural monoterpenes were evaluated in vitro for their antiplasmodial activities against Plasmodium falciparum. Chemically modified terpenes were also tested to see whether the introduction of an alkyne, a cyclopropane, a diene, or a cyclopentenone moiety had an influence on the biological activity. The IC(50) obtained on a chloroquine-resistant strain of Plasmodium (FcM29-Cameroon) showed moderate activity, but with the alkyne and the cyclopentenone derivatives showing a promising enhancement of activity compared with the parent molecules. On the contrary, no antifungal activity was found in vitro using Candida albicans. Given the observed antiplasmodial activity of some of these modified monoterpenes, new monoterpene derivatives could be the basis for new antimalarial drugs to be researched.  相似文献   
74.
Eukaryotic phosphomannomutases (PMMs) catalyze the interconversion of mannose 6-phosphate to mannose 1-phosphate and are essential to the biosynthesis of GDP-mannose. As such, plant PMMs are involved in ascorbic acid (AsA) biosynthesis and N-glycosylation. We report on the conditional phenotype of the temperature-sensitive Arabidopsis thaliana pmm-12 mutant. Mutant seedlings were phenotypically similar to wild type seedlings when grown at 16-18 degrees C but died within several days after transfer to 28 degrees C. This phenotype was observed throughout both vegetative and reproductive development. Protein extracts derived from pmm-12 plants had lower PMM protein and enzyme activity levels. In vitro biochemical analysis of recombinant proteins showed that the mutant PMM protein was compromised in its catalytic efficiency (K cat/K m). Despite significantly decreased AsA levels in pmm-12 plants, AsA deficiency could not account for the observed phenotype. Since, at restrictive temperature, total glycoprotein patterns were altered and glycosylation of protein-disulfide isomerase was perturbed, we propose that a deficiency in protein glycosylation is responsible for the observed cell death phenotype.  相似文献   
75.
Since its discovery, caspase-8 has been placed at the apex of the proteolytic cascade triggered by death receptor (DR) cross-linking. Because of its capacity to interact with the cytoplasmic portion of DR, it has been suggested that caspase-8 acts independently of other caspases in the initiation of Fas and other DR signaling. In this study, we demonstrate that in Jurkat cells, caspase-3 cleavage is an early step during Fas-induced apoptosis. We show that caspase-3 processing into its p20 occurs rapidly after Fas cross-linking, in the absence of mitochondrial depolarization and caspase-9 activation. Moreover, caspase-3 is present in lipid rafts of untreated Jurkat cells and peripheral T lymphocytes. Caspase-3, caspase-8, and Fas-associated death domain are further recruited to lipid rafts of Jurkat cells following anti-Fas treatment. Fas immunoprecipitation reveals that caspase-3 is a component of the death-inducing signaling complex, suggesting that this cysteine protease is in close proximity to caspase-8. Furthermore, transduction of Jurkat cells with a caspase-3 dominant-negative form inhibits caspase-8 processing and results in inhibition of apoptosis, suggesting that caspase-3 activity is required for caspase-8 activation. Overall, these findings support a model whereby caspase-3 is a component of the death-inducing signaling complex located in lipid rafts, and as such, is involved in the amplification of caspase-8 activity by the mitochondrion.  相似文献   
76.
Regulation of energy homeostasis in animals involves adaptation of energy intake to its loss, through a perfect regulation of feeding behavior and energy storage/expenditure. Factors from the periphery modulate brain activity in order to adjust food intake as needed. Particularly, “first order” neurons from arcuate nucleus are able to detect modifications in homeostatic parameters and to transmit information to “second order” neurons, partly located in the lateral hypothalamic area. These “second order” neurons have widespread projections throughout the brain and their proper activation leads them to a coordinated response associated to an adapted behavior. Among these neurons, melanin-concentrating hormone (MCH) expressing neurons play an integrative role of the various factors arising from periphery, first order neurons and extra-hypothalamic arousal systems neurons and modulate regulation of feeding, drinking and seeking behaviors. As regulation of MCH release is correlated to regulation of MCH neuronal activity, we focused this review on the electrophysiological properties of MCH neurons from the lateral hypothalamic area. We first reviewed the knowledge on the endogenous electrical properties of MCH neurons identified according to various criteria which are described. Then, we dealt with the modulations of the electrical activity of MCH neurons by different factors such as glucose, glutamate and GABA, peptides and hormones regulating feeding and transmitters of extra-hypothalamic arousal systems. Finally, we described the current knowledge on the modulation of MCH neuronal activity by cytokines and chemokines. Because of such regulation, MCH neurons are some of the best candidate to account for infection-induced anorexia, but also obesity.  相似文献   
77.
Given the rate of projected environmental change for the 21st century, urgent adaptation and mitigation measures are required to slow down the on-going erosion of biodiversity. Even though increasing evidence shows that recent human-induced environmental changes have already triggered species’ range shifts, changes in phenology and species’ extinctions, accurate projections of species’ responses to future environmental changes are more difficult to ascertain. This is problematic, since there is a growing awareness of the need to adopt proactive conservation planning measures using forecasts of species’ responses to future environmental changes.

There is a substantial body of literature describing and assessing the impacts of various scenarios of climate and land-use change on species’ distributions. Model predictions include a wide range of assumptions and limitations that are widely acknowledged but compromise their use for developing reliable adaptation and mitigation strategies for biodiversity. Indeed, amongst the most used models, few, if any, explicitly deal with migration processes, the dynamics of population at the “trailing edge” of shifting populations, species’ interactions and the interaction between the effects of climate and land-use.

In this review, we propose two main avenues to progress the understanding and prediction of the different processes occurring on the leading and trailing edge of the species’ distribution in response to any global change phenomena. Deliberately focusing on plant species, we first explore the different ways to incorporate species’ migration in the existing modelling approaches, given data and knowledge limitations and the dual effects of climate and land-use factors. Secondly, we explore the mechanisms and processes happening at the trailing edge of a shifting species’ distribution and how to implement them into a modelling approach. We finally conclude this review with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world.  相似文献   

78.
The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% β-strands, similar to pore-forming β-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.  相似文献   
79.
The Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2-dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing. Movement of SUN-1 aggregates correlated with chromatin polarization. We also analyzed the requirements for the formation of movement-competent matefin/SUN-1 aggregates in the context of chromosome structure and found that chromosome axes were required to produce wild-type numbers of attachment plaques. Abrogation of synapsis led to a deceleration of SUN-1 aggregate movement. Analysis of matefin/SUN-1 in a double-strand break deficient mutant revealed that repair intermediates influenced matefin/SUN-1 aggregate dynamics. Investigation of movement in meiotic regulator mutants substantiated that proper orchestration of the meiotic program and effective repair of DNA double-strand breaks were necessary for the wild-type behavior of matefin/SUN-1 aggregates.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号