首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2437篇
  免费   252篇
  国内免费   1篇
  2690篇
  2023年   20篇
  2022年   32篇
  2021年   74篇
  2020年   58篇
  2019年   53篇
  2018年   53篇
  2017年   59篇
  2016年   87篇
  2015年   141篇
  2014年   150篇
  2013年   167篇
  2012年   200篇
  2011年   187篇
  2010年   110篇
  2009年   112篇
  2008年   146篇
  2007年   115篇
  2006年   117篇
  2005年   111篇
  2004年   92篇
  2003年   107篇
  2002年   86篇
  2001年   28篇
  2000年   20篇
  1999年   19篇
  1998年   24篇
  1997年   13篇
  1996年   13篇
  1995年   16篇
  1994年   11篇
  1993年   10篇
  1992年   19篇
  1991年   14篇
  1990年   11篇
  1989年   16篇
  1988年   7篇
  1987年   14篇
  1986年   9篇
  1985年   9篇
  1984年   18篇
  1981年   8篇
  1980年   11篇
  1978年   9篇
  1974年   10篇
  1969年   5篇
  1879年   6篇
  1878年   14篇
  1877年   14篇
  1876年   13篇
  1875年   5篇
排序方式: 共有2690条查询结果,搜索用时 15 毫秒
171.
The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today’s open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.  相似文献   
172.
173.
This paper reviews in detail Francisco Varela's work on subjectivity and consciousness in the biological sciences. His original approach to this "hard problem" presents a subjectivity that is radically intertwined with its biological and physical roots. It must be understood within the framework of his theory of a concrete, embodied dynamics, grounded in his general theory of autonomous systems. Through concepts and paradigms such as biological autonomy, embodiment and neurophenomenology, the article explores the multiple levels of circular causality assumed by Varela to play a fundamental role in the emergence of human experience. The concept of biological autonomy provides the necessary and sufficient conditions for characterizing biological life and identity as an emergent and circular self-producing process. Embodiment provides a systemic and dynamical framework for understanding how a cognitive self--a mind--can arise in an organism in the midst of its operational cycles of internal regulation and ongoing sensorimotor coupling. Global subjective properties can emerge at different levels from the interactions of components and can reciprocally constrain local processes through an ongoing, recursive morphodynamics. Neurophenomenology is a supplementary step in the study of consciousness. Through a rigorous method, it advocates the careful examination of experience with first-person methodologies. It attempts to create heuristic mutual constraints between biophysical data and data produced by accounts of subjective experience. The aim is to explicitly ground the active and disciplined insight the subject has about his/her experience in a biophysical emergent process. Finally, we discuss Varela's essential contribution to our understanding of the generation of consciousness in the framework of what we call his "biophysics of being."  相似文献   
174.
175.

Background

We recently showed that transient warming effects decreased the functional and adhesion properties of mesenchymal stromal cells (MSC) while post-thaw viability remained high. In an attempt to better predict functional impairment of cryopreserved MSC, we further analysed the correlation between viability, immunosuppressive activity and adhesion of cells exposed or not to warming events.

Methods

MSC prepared from six umbilical cords were frozen to ?130°C and immediately transferred in a dry ice container or exposed to room temperature for 2 to 10 min (warming events) prior to storage in liquid nitrogen. Viability, functionality (inhibition of T-cell proliferation), adhesion and expression of various integrins were evaluated.

Results

The monotonic loss of functional activity with time was proportional to the length of warming events to which MSC were subjected and correlated with the monotonic loss of adhesion capacity. In contrast, post-thaw viability assessment did not predict functional impairment. Interestingly, flow cytometry analyses revealed the emergence of a FSClow population present in the viable cell fraction of freshly thawed MSC, which displayed poor adhesion capacity and expressed low levels of integrin β5. The prevalence of this FSClow population increased with the length of warming events and correlated with impaired functional and adhesion properties.

Discussion

Our results reveal that loss of functional activity (4-day test) induced by transient warming events could be predicted by evaluating adhesion (2-hr test) or FSC profile (10-min test) of MSC immediately post-thaw. These observations could lead to the development of surrogate tests for rapidly assessing the functional quality of cryopreserved MSC.  相似文献   
176.
177.
178.
179.
Ectomycorrhizae are formed by mutualistic interactions between fungi and the roots of woody plants. During symbiosis the two organisms exchange carbon and nutrients in a specific tissue that is formed at the contact between a compatible fungus and plant. There is considerable variation in the degree of host specificity among species and strains of ectomycorrhizal fungi. In this study, we have for the first time shown that this variation is associated with quantitative differences in gene expression, and with divergence in nucleotide sequences of symbiosis-regulated genes. Gene expression and sequence evolution were compared in different strains of the ectomycorrhizal fungus Paxillus involutus; the strains included Nau, which is not compatible with birch and poplar, and the two compatible strains Maj and ATCC200175. On a genomic level, Nau and Maj were very similar. The sequence identity was 98.9% in the 16 loci analysed, and only three out of 1075 genes analysed by microarray-based hybridizations had signals indicating differences in gene copy numbers. In contrast, 66 out of the 1075 genes were differentially expressed in Maj compared to Nau after contact with birch roots. Thirty-seven of these symbiosis-regulated genes were also differentially expressed in the ATCC strain. Comparative analysis of DNA sequences of the symbiosis-regulated genes in different strains showed that two of them have evolved at an enhanced rate in Nau. The sequence divergence can be explained by a decreased selection pressure, which in turn is determined by lower functional constraints on these proteins in Nau as compared to the compatible strains.  相似文献   
180.
Tumors frequently express urokinase (uPA) receptor (uPAR). To investigate whether uPAR can efficiently target cancerous cells using amphotropic retroviral vectors, we generated a retrovirus displaying the amino-terminal fragment (ATF) of uPA as an N-terminal extension of viral envelope protein. We also made use of a "two-step strategy" by inserting a uPA cleavage site between the ATF moiety and the envelope. We measured the ability of ATF-bearing chimeric envelopes to infect huPAR-overexpressing Madin-Darby canine kidney (MDCK) and control MDCK II cells. The ATF-viruses infected both MDCK cell lines with an equivalent efficiency, suggesting that the chimeric viruses were not sequestered by uPAR and infect cells preferentially via the Pit-2 receptor. The addition of a uPA cleavage site increased the infection level of huPAR-MDCK cells by 2-fold when uPA was present in the infection medium. Surprisingly, ATF-env viruses infected huPAR-MDCK cells 5.5-fold more efficiently in the presence of exogenous uPA. This stimulatory effect of uPA on infection of huPAR-MDCK cells by the ATF-env virus was completely abolished by methyl-beta-cyclodextrin, suggesting that this effect involves the caveolar endocytosis pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号