全文获取类型
收费全文 | 1123篇 |
免费 | 98篇 |
专业分类
1221篇 |
出版年
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 16篇 |
2020年 | 9篇 |
2019年 | 10篇 |
2018年 | 14篇 |
2017年 | 19篇 |
2016年 | 36篇 |
2015年 | 53篇 |
2014年 | 65篇 |
2013年 | 72篇 |
2012年 | 110篇 |
2011年 | 109篇 |
2010年 | 72篇 |
2009年 | 60篇 |
2008年 | 83篇 |
2007年 | 68篇 |
2006年 | 49篇 |
2005年 | 73篇 |
2004年 | 68篇 |
2003年 | 51篇 |
2002年 | 45篇 |
2001年 | 18篇 |
2000年 | 11篇 |
1999年 | 14篇 |
1998年 | 12篇 |
1997年 | 9篇 |
1996年 | 3篇 |
1995年 | 5篇 |
1994年 | 10篇 |
1993年 | 6篇 |
1992年 | 8篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1988年 | 2篇 |
1986年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1976年 | 4篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1971年 | 2篇 |
1970年 | 2篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1964年 | 1篇 |
1940年 | 1篇 |
排序方式: 共有1221条查询结果,搜索用时 15 毫秒
131.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with
respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most
of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used
for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at
rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly
formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea.
The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained
undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles
in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical
turnover rates. 相似文献
132.
Lamprecht P Erdmann A Mueller A Csernok E Reinhold-Keller E Holl-Ulrich K Feller AC Bruehl H Gross WL 《Arthritis research & therapy》2003,5(1):R25-R31
Memory T cells display phenotypic heterogeneity. Surface antigens previously regarded as exclusive markers of naive T cells, such as L-selectin (CD62L), can also be detected on some memory T cells. Moreover, a fraction of CD45RO+ (positive for the short human isoform of CD45) memory T cells reverts to the CD45RA+ (positive for the long human isoform of CD45) phenotype. We analyzed patients with biopsy-proven localized Wegener's granulomatosis (WG) (n = 5), generalized WG (n = 16) and age- and sex-matched healthy controls (n = 13) to further characterize memory T cells in WG. The cell-surface expression of CD45RO, CD45RA, CD62L, CCR3, CCR5 and CXCR3 was determined on blood-derived T cells by four-color flow cytometric analysis. The fractions of CCR5+ and CCR3+ cells within the CD4+CD45RO+ and CD8+CD45RO+ memory T cell populations were significantly expanded in localized and generalized WG. The mean percentage of Th1-type CCR5 expression was higher in localized WG. Upregulated CCR5 and CCR3 expression could also be detected on a fraction of CD45RA+ T cells. CD62L expression was seen on approximately half of the memory T cell populations expressing chemokine receptors. This study demonstrates for the first time that expression of the inducible inflammatory chemokine receptors CCR5 and CCR3 on CD45RO+ memory T cells, as well as on CD45RA+ T cells ('revertants'), contributes to phenotypic heterogeneity in an autoimmune disease, namely WG. Upregulated CCR5 and CCR3 expression suggests that the cells belong to the effector memory T cell population. CCR5 and CCR3 expression on CD4+ and CD8+ memory T cells indicates a potential to respond to chemotactic gradients and might be important in T cell migration contributing to granuloma formation and vasculitis in WG. 相似文献
133.
To what extent are the left and right visual hemifields spatially coded in the dorsal frontoparietal attention network? In many experiments with neglect patients, the left hemisphere shows a contralateral hemifield preference, whereas the right hemisphere represents both hemifields. This pattern of spatial coding is often used to explain the right-hemispheric dominance of lesions causing hemispatial neglect. However, pathophysiological mechanisms of hemispatial neglect are controversial because recent experiments on healthy subjects produced conflicting results regarding the spatial coding of visual hemifields. We used an fMRI paradigm that allowed us to distinguish two attentional subprocesses during a visual search task. Either within the left or right hemifield subjects first attended to stationary locations (spatial orienting) and then shifted their attentional focus to search for a target line. Dynamic changes in spatial coding of the left and right hemifields were observed within subregions of the dorsal front-parietal network: During stationary spatial orienting, we found the well-known spatial pattern described above, with a bilateral hemifield representation in the right hemisphere and a contralateral preference in the left hemisphere. However, during search, the right hemisphere had a contralateral preference and the left hemisphere equally represented both hemifields. This finding leads to novel perspectives regarding models of visuospatial attention and hemispatial neglect. 相似文献
134.
Viral Preprotoxin Signal Sequence Allows Efficient Secretion of Green Fluorescent Protein by Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe 下载免费PDF全文
Antje Eiden-Plach Tatjana Zagorc Tanja Heintel Yvonne Carius Frank Breinig Manfred J. Schmitt 《Applied microbiology》2004,70(2):961-966
Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast. 相似文献
135.
136.
The maturation of Borna disease virus (BDV) glycoprotein GP was studied in regard to intracellular compartmentalization, compartmentalization signal-domains, proteolytic processing, and packaging into virus particles. Our data show that BDV-GP is (i) predominantly located in the endoplasmic reticulum (ER), (ii) partially exists in the ER already as cleaved subunits GP-N and GP-C, (iii) is directed to the ER/cis-Golgi region by its transmembrane and/or cytoplasmic domains in CD8-BDV-GP hybrid constructs and (iv) is incorporated in the virus particles as authentic BDV glycoprotein exclusively in the cleaved form decorated with N-glycans of the complex type. Downregulation of BDV-glycoproteins on the cell surface, their limited proteolytic processing, and protection of antigenic epitopes on the viral glycoproteins by host-identical N-glycans are different strategies for persistent virus infections. 相似文献
137.
Bianca Schmid Melanie Rinas Alessia Ruggieri Eliana Gisela Acosta Marie Bartenschlager Antje Reuter Wolfgang Fischl Nathalie Harder Jan-Philip Bergeest Michael Flossdorf Karl Rohr Thomas H?fer Ralf Bartenschlager 《PLoS pathogens》2015,11(12)
Dengue virus (DENV) is the most common mosquito-transmitted virus infecting ~390 million people worldwide. In spite of this high medical relevance, neither a vaccine nor antiviral therapy is currently available. DENV elicits a strong interferon (IFN) response in infected cells, but at the same time actively counteracts IFN production and signaling. Although the kinetics of activation of this innate antiviral defense and the timing of viral counteraction critically determine the magnitude of infection and thus disease, quantitative and kinetic analyses are lacking and it remains poorly understood how DENV spreads in IFN-competent cell systems. To dissect the dynamics of replication versus antiviral defense at the single cell level, we generated a fully viable reporter DENV and host cells with authentic reporters for IFN-stimulated antiviral genes. We find that IFN controls DENV infection in a kinetically determined manner that at the single cell level is highly heterogeneous and stochastic. Even at high-dose, IFN does not fully protect all cells in the culture and, therefore, viral spread occurs even in the face of antiviral protection of naïve cells by IFN. By contrast, a vaccine candidate DENV mutant, which lacks 2’-O-methylation of viral RNA is profoundly attenuated in IFN-competent cells. Through mathematical modeling of time-resolved data and validation experiments we show that the primary determinant for attenuation is the accelerated kinetics of IFN production. This rapid induction triggered by mutant DENV precedes establishment of IFN-resistance in infected cells, thus causing a massive reduction of virus production rate. In contrast, accelerated protection of naïve cells by paracrine IFN action has negligible impact. In conclusion, these results show that attenuation of the 2’-O-methylation DENV mutant is primarily determined by kinetics of autocrine IFN action on infected cells. 相似文献
138.
Sai Li Zhaoyang Sun Rhys Pryce Marie-Laure Parsy Sarah K. Fehling Katrin Schlie C. Alistair Siebert Wolfgang Garten Thomas A. Bowden Thomas Strecker Juha T. Huiskonen 《PLoS pathogens》2016,12(2)
Lassa virus is an enveloped, bi-segmented RNA virus and the most prevalent and fatal of all Old World arenaviruses. Virus entry into the host cell is mediated by a tripartite surface spike complex, which is composed of two viral glycoprotein subunits, GP1 and GP2, and the stable signal peptide. Of these, GP1 binds to cellular receptors and GP2 catalyzes fusion between the viral envelope and the host cell membrane during endocytosis. The molecular structure of the spike and conformational rearrangements induced by low pH, prior to fusion, remain poorly understood. Here, we analyzed the three-dimensional ultrastructure of Lassa virus using electron cryotomography. Sub-tomogram averaging yielded a structure of the glycoprotein spike at 14-Å resolution. The spikes are trimeric, cover the virion envelope, and connect to the underlying matrix. Structural changes to the spike, following acidification, support a viral entry mechanism dependent on binding to the lysosome-resident receptor LAMP1 and further dissociation of the membrane-distal GP1 subunits. 相似文献
139.
Susan?Krull Antje?Hevekerl Anja?KuenzEmail author Ulf?Prü?e 《Applied microbiology and biotechnology》2017,101(10):4063-4072
Itaconic acid is a promising organic acid and is commercially produced by submerged fermentation of Aspergillus terreus. The cultivation process of the sensitive filamentous fungus has been studied intensively since 1932, with respect to fermentation media components, oxygen supply, shearing rate, pH value, or culture method. Whereas increased final titers were achieved over the years, the productivity has so far remained quite low. In this study, the impact of the pH on the itaconic acid production was investigated in detail. The pH during the growth and production phase had a significant influence on the final itaconic acid concentration and pellet diameter. The highest itaconic acid concentration of 160 g/L was achieved at a 1.5-L scale within 6.7 days by raising and controlling the pH value to pH 3.4 in the production phase. An ammonia solution and an increased phosphate concentration were used with an itaconic acid yield of 0.46 (w/w) and an overall productivity of 0.99 g/L/h in a fed-batch mode. A cultivation with a lower phosphate concentration resulted in an equal final concentration with an increased yield of 0.58 (w/w) after 11.8 days and an overall productivity of 0.57 g/L/h. This optimized process was successfully transferred from a 1.5-L scale to a 15-L scale. After 9.7 days, comparable pellet morphology and a final concentration of 150 g/L itaconic acid was reached. This paper provides a process strategy to yield a final titer of itaconic acid from a wild-type strain of A. terreus which is in the same range as the well-known citric acid production. 相似文献
140.
Structure and function of Rho-type molecular switches in plants. 总被引:5,自引:0,他引:5
Molecular switches of the Rho family, in concert with their associated regulators and effectors are well known as important control elements of vital signaling pathways in eucaryotic organisms. Yet, this knowledge has so far been established mainly from animal and fungal studies. However, during the recent years, the Rho switch has gone increasingly green as well, and it turned out that the homologous system in plants holds some distinctive features regarding structures, functions and molecular mechanisms for signal transduction. In this review, we give an overview about the structural characteristics of the Rho proteins of plants, termed ROP, highlighting some exciting differences to their animal and fungal counterparts. We further address the unique regulators and effectors of the ROPs and discuss the structural basis for the function and interaction of those proteins in ROP controlled reaction cascades. We finally intend to stimulate the demand for future three-dimensional structures that advance our understanding of the ROP switch in plants. 相似文献