全文获取类型
收费全文 | 1065篇 |
免费 | 72篇 |
专业分类
1137篇 |
出版年
2023年 | 2篇 |
2022年 | 5篇 |
2021年 | 16篇 |
2020年 | 9篇 |
2019年 | 10篇 |
2018年 | 13篇 |
2017年 | 19篇 |
2016年 | 34篇 |
2015年 | 53篇 |
2014年 | 63篇 |
2013年 | 71篇 |
2012年 | 105篇 |
2011年 | 104篇 |
2010年 | 64篇 |
2009年 | 56篇 |
2008年 | 81篇 |
2007年 | 66篇 |
2006年 | 46篇 |
2005年 | 70篇 |
2004年 | 66篇 |
2003年 | 46篇 |
2002年 | 44篇 |
2001年 | 13篇 |
2000年 | 7篇 |
1999年 | 8篇 |
1998年 | 11篇 |
1997年 | 7篇 |
1996年 | 3篇 |
1995年 | 4篇 |
1994年 | 8篇 |
1993年 | 5篇 |
1992年 | 4篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1982年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1976年 | 2篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1964年 | 1篇 |
1940年 | 1篇 |
排序方式: 共有1137条查询结果,搜索用时 15 毫秒
51.
Leushacke M Spörle R Bernemann C Brouwer-Lehmitz A Fritzmann J Theis M Buchholz F Herrmann BG Morkel M 《PloS one》2011,6(8):e23381
In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression. 相似文献
52.
Huttenrauch F Nitzki A Lin FT Höning S Oppermann M 《The Journal of biological chemistry》2002,277(34):30769-30777
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5. 相似文献
53.
Georges Martin Antje Ostareck-Lederer Ashwin Chari Nils Neuenkirchen Sabine Dettwiler Diana Blank Ursula Rüegsegger Utz Fischer Walter Keller 《RNA (New York, N.Y.)》2010,16(8):1646-1659
Mammalian cleavage factor I (CF Im) is composed of two polypeptides of 25 kDa and either a 59 or 68 kDa subunit (CF Im25, CF Im59, CF Im68). It is part of the cleavage and polyadenylation complex responsible for processing the 3′ ends of messenger RNA precursors. To investigate post-translational modifications in factors of the 3′ processing complex, we systematically searched for enzymes that modify arginines by the addition of methyl groups. Protein arginine methyltransferases (PRMTs) are such enzymes that transfer methyl groups from S-adenosyl methionine to arginine residues within polypeptide chains resulting in mono- or dimethylated arginines. We found that CF Im68 and the nuclear poly(A) binding protein 1 (PABPN1) were methylated by HeLa cell extracts in vitro. By fractionation of these extracts followed by mass spectral analysis, we could demonstrate that the catalytic subunit PRMT5, together with its cofactor WD45, could symmetrically dimethylate CF Im68, whereas pICln, the third polypeptide of the complex, was stimulatory. As sites of methylation in CF Im68 we could exclusively identify arginines in a GGRGRGRF or “GAR” motif that is conserved in vertebrates. Further in vitro assays revealed a second methyltransferase, PRMT1, which modifies CF Im68 by asymmetric dimethylation of the GAR motif and also weakly methylates the C-termini of both CF Im59 and CF Im68. The results suggest that native—as compared with recombinant—protein substrates may contain additional determinants for methylation by specific PRMTs. A possible involvement of CF Im methylation in the context of RNA export is discussed. 相似文献
54.
Peter Schierack Stefan R?diger Christoph Kuhl Rico Hiemann Dirk Roggenbuck Ganwu Li J?rg Weinreich Enrico Berger Lisa K. Nolan Bryon Nicholson Antje R?mer Ulrike Fr?mmel Lothar H. Wieler Christian Schr?der 《PloS one》2013,8(4)
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars. 相似文献
55.
Helge Niemann Peter Linke Katrin Knittel Enrique MacPherson Antje Boetius Warner Brückmann Gaute Larvik Klaus Wallmann Ulrike Schacht Enoma Omoregie David Hilton Kevin Brown Gregor Rehder 《PloS one》2013,8(10)
Cold seep ecosystems can support enormous biomasses of free-living and symbiotic chemoautotrophic organisms that get their energy from the oxidation of methane or sulfide. Most of this biomass derives from animals that are associated with bacterial symbionts, which are able to metabolize the chemical resources provided by the seeping fluids. Often these systems also harbor dense accumulations of non-symbiotic megafauna, which can be relevant in exporting chemosynthetically fixed carbon from seeps to the surrounding deep sea. Here we investigated the carbon sources of lithodid crabs (Paralomis sp.) feeding on thiotrophic bacterial mats at an active mud volcano at the Costa Rica subduction zone. To evaluate the dietary carbon source of the crabs, we compared the microbial community in stomach contents with surface sediments covered by microbial mats. The stomach content analyses revealed a dominance of epsilonproteobacterial 16S rRNA gene sequences related to the free-living and epibiotic sulfur oxidiser Sulfurovum sp. We also found Sulfurovum sp. as well as members of the genera Arcobacter and Sulfurimonas in mat-covered surface sediments where Epsilonproteobacteria were highly abundant constituting 10% of total cells. Furthermore, we detected substantial amounts of bacterial fatty acids such as i-C15∶0 and C17∶1ω6c with stable carbon isotope compositions as low as −53‰ in the stomach and muscle tissue. These results indicate that the white microbial mats at Mound 12 are comprised of Epsilonproteobacteria and that microbial mat-derived carbon provides an important contribution to the crab''s nutrition. In addition, our lipid analyses also suggest that the crabs feed on other 13C-depleted organic matter sources, possibly symbiotic megafauna as well as on photosynthetic carbon sources such as sedimentary detritus. 相似文献
56.
Martina Wendel Anna Petzold Roland Koslowski Michael Kasper Antje Augstein Lilla Knels Jörg-Uwe Bleyl Thea Koch 《Histochemistry and cell biology》2000,122(5):507-517
Pulmonary fibrosis is characterized by excessive extracellular matrix deposition with concomitant loss of gas exchange units, and endothelin-1 (ET-1) has been implicated in its pathogenesis. Increased levels of ET-1 from tissues and bronchoalveolar lavage have been reported in patients with pulmonary fibrosis and in animal models after intratracheal bleomycin. We characterized the cellular distribution of alveolar ET receptors by immunohistochemistry in bleomycin-induced pulmonary fibrosis in the rat and determined the regulation by bleomycin of ET receptor mRNA expression in isolated alveolar macrophages and rat lung fibroblasts. We found significant increases in the numbers of fibroblasts and macrophages at day 7 compared to day 28 and control animals. ETB receptor immunoreactivity was observed on fibroblasts and invading monocytes. Isolated fibroblasts expressed both ETA and ETB receptor mRNA, and ETA receptor mRNA was upregulated by bleomycin. Isolated resident alveolar macrophages expressed neither ETA nor ETB receptor mRNA which were also not induced by bleomycin. We conclude that, while ETB receptor stimulation of fibroblasts and monocytes recruited during bleomycin-induced lung injury exerts antagonistic effects on fibroblast collagen synthesis, the observed increase in the number of fibroblasts in vivo and upregulation of fibroblast ETA receptor mRNA by bleomycin in vitro point to a predominance of the profibrotic effects of ET receptor engagement. 相似文献
57.
Naarmann IS Harnisch C Müller-Newen G Urlaub H Ostareck-Lederer A Ostareck DH 《RNA (New York, N.Y.)》2010,16(11):2189-2204
Erythroid precursor cells lose the capacity for mRNA synthesis due to exclusion of the nucleus during maturation. Therefore, the stability and translation of mRNAs that code for specific proteins, which function in late stages of maturation when reticulocytes become erythrocytes, are controlled tightly. Reticulocyte 15-lipoxygenase (r15-LOX) initiates the breakdown of mitochondria in mature reticulocytes. Through the temporal restriction of mRNA translation, the synthesis of r15-LOX is prevented in premature cells. The enzyme is synthesized only in mature reticulocytes, although r15-LOX mRNA is already present in erythroid precursor cells. Translation of r15-LOX mRNA is inhibited by hnRNP K and hnRNP E1, which bind to the differentiation control element (DICE) in its 3' untranslated region (3'UTR). The hnRNP K/E1-DICE complex interferes with the joining of the 60S ribosomal subunit to the 40S subunit at the AUG. We took advantage of the inducible human erythroid K562 cell system that fully recapitulates this process to identify so far unknown factors, which are critical for DICE-dependent translational regulation. Applying RNA chromatography with the DICE as bait combined with hnRNP K immunoprecipitation, we specifically purified the DEAD-box RNA helicase 6 (DDX6) that interacts with hnRNP K and hnRNP E1 in a DICE-dependent manner. Employing RNA interference and fluorescence in situ hybridization, we show that DDX6 colocalizes with endogenous human (h)r15-LOX mRNA to P-body-like RNP granules, from which 60S ribosomal subunits are excluded. Our data suggest that in premature erythroid cells translational silencing of hr15-LOX mRNA is maintained by DDX6 mediated storage in these RNP granules. 相似文献
58.
Lang C Rastew E Hermes B Siegbrecht E Ahrends R Banerji S Flieger A 《The Journal of biological chemistry》2012,287(28):23464-23478
Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated. 相似文献
59.
Dual lifetime referencing enables pH‐control for oxidoreductions in hydrogel‐stabilized biphasic reaction systems 下载免费PDF全文
pH‐shifts are a serious challenge in cofactor dependent biocatalytic oxidoreductions. Therefore, a pH control strategy was developed for reaction systems, where the pH value is not directly measurable. Such a reaction system is the biphasic aqueous‐organic reaction system, where the oxidoreduction of hydrophobic substrates in organic solvents is catalysed by hydrogel‐immobilized enzymes, and enzyme‐coupled cofactor regeneration is accomplished via formate dehydrogenase, leading to a pH‐shift. Dual lifetime referencing (DLR), a fluorescence spectroscopic method, was applied for online‐monitoring of the pH‐value within the immobilizates during the reaction, allowing for a controlled dosage of formic acid. It could be shown that by applying trisodium 8‐hydroxypyrene‐1, 3, 6‐trisulfonate as pH indicator and Ru(II) tris(4, 7‐diphenyl‐1, 10‐phenantroline) (Ru[dpp]) as a reference luminophore the control of the pH‐value in a macroscopic gel‐bead‐stabilized aqueous/organic two phase system in a range of pH 6.5 to 8.0 is possible. An experimental proof of concept could maintain a stable pH of 7.5 ± 0.15 during the reaction for at least 105 h. With these results, it could be shown that DLR is a powerful tool for pH‐control within reaction systems with no direct access for conventional pH‐measurement. 相似文献
60.