首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13482篇
  免费   1156篇
  国内免费   10篇
  2022年   106篇
  2021年   228篇
  2020年   142篇
  2019年   185篇
  2018年   206篇
  2017年   172篇
  2016年   329篇
  2015年   564篇
  2014年   586篇
  2013年   793篇
  2012年   955篇
  2011年   979篇
  2010年   633篇
  2009年   557篇
  2008年   828篇
  2007年   868篇
  2006年   777篇
  2005年   747篇
  2004年   768篇
  2003年   714篇
  2002年   656篇
  2001年   145篇
  2000年   91篇
  1999年   143篇
  1998年   166篇
  1997年   124篇
  1996年   116篇
  1995年   103篇
  1994年   94篇
  1993年   107篇
  1992年   101篇
  1991年   72篇
  1990年   80篇
  1989年   63篇
  1988年   78篇
  1987年   75篇
  1986年   61篇
  1985年   81篇
  1984年   79篇
  1983年   80篇
  1982年   107篇
  1981年   94篇
  1980年   88篇
  1979年   54篇
  1978年   53篇
  1977年   54篇
  1976年   53篇
  1975年   44篇
  1974年   49篇
  1973年   57篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
971.
972.

Background

Advanced predictive analytical techniques are being increasingly applied to clinical risk assessment. This study compared a neural network model to several other models in predicting the length of stay (LOS) in the cardiac surgical intensive care unit (ICU) based on pre-incision patient characteristics.

Methods

Thirty six variables collected from 185 cardiac surgical patients were analyzed for contribution to ICU LOS. The Automatic Linear Modeling (ALM) module of IBM-SPSS software identified 8 factors with statistically significant associations with ICU LOS; these factors were also analyzed with the Artificial Neural Network (ANN) module of the same software. The weighted contributions of each factor (“trained” data) were then applied to data for a “new” patient to predict ICU LOS for that individual.

Results

Factors identified in the ALM model were: use of an intra-aortic balloon pump; O2 delivery index; age; use of positive cardiac inotropic agents; hematocrit; serum creatinine ≥ 1.3 mg/deciliter; gender; arterial pCO2. The r2 value for ALM prediction of ICU LOS in the initial (training) model was 0.356, p <0.0001. Cross validation in prediction of a “new” patient yielded r2 = 0.200, p <0.0001. The same 8 factors analyzed with ANN yielded a training prediction r2 of 0.535 (p <0.0001) and a cross validation prediction r2 of 0.410, p <0.0001. Two additional predictive algorithms were studied, but they had lower prediction accuracies. Our validated neural network model identified the upper quartile of ICU LOS with an odds ratio of 9.8(p <0.0001).

Conclusions

ANN demonstrated a 2-fold greater accuracy than ALM in prediction of observed ICU LOS. This greater accuracy would be presumed to result from the capacity of ANN to capture nonlinear effects and higher order interactions. Predictive modeling may be of value in early anticipation of risks of post-operative morbidity and utilization of ICU facilities.  相似文献   
973.

Introduction

The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals.

Materials and Methods

A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed.

Results

None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count.

Discussion

No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection.  相似文献   
974.
For infants, the first problem in learning a word is to map the word to its referent; a second problem is to remember that mapping when the word and/or referent are again encountered. Recent infant studies suggest that spatial location plays a key role in how infants solve both problems. Here we provide a new theoretical model and new empirical evidence on how the body – and its momentary posture – may be central to these processes. The present study uses a name-object mapping task in which names are either encountered in the absence of their target (experiments 1–3, 6 & 7), or when their target is present but in a location previously associated with a foil (experiments 4, 5, 8 & 9). A humanoid robot model (experiments 1–5) is used to instantiate and test the hypothesis that body-centric spatial location, and thus the bodies’ momentary posture, is used to centrally bind the multimodal features of heard names and visual objects. The robot model is shown to replicate existing infant data and then to generate novel predictions, which are tested in new infant studies (experiments 6–9). Despite spatial location being task-irrelevant in this second set of experiments, infants use body-centric spatial contingency over temporal contingency to map the name to object. Both infants and the robot remember the name-object mapping even in new spatial locations. However, the robot model shows how this memory can emerge –not from separating bodily information from the word-object mapping as proposed in previous models of the role of space in word-object mapping – but through the body’s momentary disposition in space.  相似文献   
975.
Although human excreta as a NH3 source has been recognized globally, this source has never been quantitatively determined in cities, hampering efforts to fully assess the causes of urban air pollution. In the present study, the exhausts of 15 ceiling ducts from collecting septic tanks in 13 buildings with 6 function types were selected to quantify NH3 emission rates in the megacity of Shanghai. As a comparison, the ambient NH3 concentrations across Shanghai were also measured at 13 atmospheric monitoring sites. The concentrations of NH3 in the ceiling ducts (28092661+5803 μg m-3) outweigh those of the open air (~10 μg m-3) by 2–3 orders of magnitude, and there is no significant difference between different seasons. δ15N values of NH3 emitted from two ceiling ducts are also seasonally consistent, suggesting that human excreta may be a stable source of NH3 in urban areas. The NH3 concentration levels were variable and dependent on the different building types and the level of human activity. NH3 emission rates of the six residential buildings (RBNH3) were in agreement with each other. Taking occupation time into account, we confined the range of the average NH3 emission factor for human excreta to be 2–4 times (with the best estimate of 3 times) of the averaged RBNH3 of 66.0±58.9 g NH3 capita-1 yr-1. With this emission factor, the population of ~21 million people living in the urban areas of Shanghai annually emitted approximately 1386 Mg NH3, which corresponds to over 11.4% of the total NH3 emissions in the Shanghai urban areas. The spatial distribution of NH3 emissions from human excreta based on population data was calculated for the city of Shanghai at a high-resolution (100×100 m). Our results demonstrate that human excreta should be included in official ammonia emission inventories.  相似文献   
976.
Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life‐history traits. Here, we quantify the extent of convergence of five key life‐history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed‐dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire‐prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life‐history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life‐history strategies. We found that species with longer seed‐dispersal distances tended to evolve lower pollen‐dispersal distance, that insect‐pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed‐bank evolved toward reduced fire‐survival ability of adults.  相似文献   
977.
Scaly‐sided Mergansers Mergus squamatus breed on freshwater rivers in far eastern Russia, Korea and China, wintering in similar habitats in China and Korea, but nothing was known of their moulting habitat. To investigate the moult strategies of this species, we combined wing feather stable isotope ratios (males and females) with geolocator data (nesting females) to establish major habitat types (freshwater, brackish or saltwater) used by both sexes during wing moult. Although most Scaly‐sided Mergansers of both sexes probably moult on freshwater, some males and non‐breeding and failed breeding females appeared to undertake moult migration to brackish and marine waters. Given the previous lack of any surveys of coastal or estuarine waters for this species during the moult period, these findings suggest important survey needs for the effective conservation of the species during the flightless moult period.  相似文献   
978.
Multi-host pathogens are particularly difficult to control, especially when at least one of the hosts acts as a hidden reservoir. Deep sequencing of densely sampled pathogens has the potential to transform this understanding, but requires analytical approaches that jointly consider epidemiological and genetic data to best address this problem. While there has been considerable success in analyses of single species systems, the hidden reservoir problem is relatively under-studied. A well-known exemplar of this problem is bovine Tuberculosis, a disease found in British and Irish cattle caused by Mycobacterium bovis, where the Eurasian badger has long been believed to act as a reservoir but remains of poorly quantified importance except in very specific locations. As a result, the effort that should be directed at controlling disease in badgers is unclear. Here, we analyse densely collected epidemiological and genetic data from a cattle population but do not explicitly consider any data from badgers. We use a simulation modelling approach to show that, in our system, a model that exploits available cattle demographic and herd-to-herd movement data, but only considers the ability of a hidden reservoir to generate pathogen diversity, can be used to choose between different epidemiological scenarios. In our analysis, a model where the reservoir does not generate any diversity but contributes to new infections at a local farm scale are significantly preferred over models which generate diversity and/or spread disease at broader spatial scales. While we cannot directly attribute the role of the reservoir to badgers based on this analysis alone, the result supports the hypothesis that under current cattle control regimes, infected cattle alone cannot sustain M. bovis circulation. Given the observed close phylogenetic relationship for the bacteria taken from cattle and badgers sampled near to each other, the most parsimonious hypothesis is that the reservoir is the infected badger population. More broadly, our approach demonstrates that carefully constructed bespoke models can exploit the combination of genetic and epidemiological data to overcome issues of extreme data bias, and uncover important general characteristics of transmission in multi-host pathogen systems.  相似文献   
979.
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer—sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers—undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.Death receptor 5 (DR5) is a member of the tumor necrosis factor receptor (TNFR) superfamily that mediates apoptosis when bound by its cognate ligand, TNF-related apoptosis-inducing ligand (1). Upregulated in cancer cells, DR5 is among the most actively pursued anticancer targets (2). TNF-related apoptosis-inducing ligand binds to preassembled DR5 trimers at their extracellular domains, causing the formation of oligomeric ligand-receptor networks that are held together by receptor dimers (3). In the long-isoform of DR5, this dimer is crosslinked via ligand-induced disulfide bond formation between two transmembrane (TM) domain α-helices at Cys-209, and is further stabilized by a GxxxG motif one helix-turn downstream (3).Our recent study of the structurally homologous TNFR1 showed that receptor activation involves a conformational change that propagates from the extracellular domain to the cytosolic domain through a separation (or opening) of the TM domains of the dimer (4). We have therefore hypothesized that the activation of DR5, and indeed all structurally homologous TNF-receptors, involves a scissorslike opening of the TM domain dimer (Fig. 1).Open in a separate windowFigure 1Activation model of the DR5-L TM dimer. The sequence and positions of the disulfide bond and TOAC spin label (top), along with our previously published model (bottom, left) are shown. We propose an activation model (bottom, right) in which the transmembrane dimer pivots at its disulfide bond to reach an active open conformation.Using electron paramagnetic resonance (EPR) spectroscopy, a technique that has been used previously to study TM helix architecture and dynamics (5,6), and potential-of-mean force (PMF) calculations (7,8), this study addresses the question of whether the isolated disulfide-linked DR5-L TM domain dimer occupies distinct open and closed states (Fig. 1), and how its dynamic behavior contributes to the free-energy landscape of the opening transition of the full-length receptor.The DR5-L TM domain was synthesized with TOAC, an amino acid with a nitroxide spin label rigidly fixed to the α-carbon (9), incorporated at position 32 (Fig. 1), with some minor modification to facilitate EPR measurements. Previous work confirmed that this peptide forms disulfide-linked dimers (e.g., via comparison to 2-ME treated sample) and a negligible population of higher-order oligomers (further supported by model fitting of the EPR data below). For peptide work, residues were renumbered such that Thr-204 corresponds to Thr-1, and so on. The cytosolic Cys-29 (which we previously showed does not participate in a disulfide bond in cells) was replaced with serine to prevent the formation of antiparallel disulfide-linked dimers, and Trp-34 was replaced with tyrosine to prevent intrinsic fluorescence in fluorescence studies (not published). Continuous-wave (CW) dipolar EPR (sensitive only to spin-spin distances <25 Å) was used to measure TOAC-TOAC distances within the TM dimers and revealed an ordered Gaussian distribution centered at 16 Å (full width half-maximum (FWHM) = 4 Å), corresponding to a closed state (Fig. 2 A). Double electron-electron resonance (DEER) (sensitive to spin-spin distances from 15 to 60 Å) also detected a short distance consistent with the dipolar EPR data, along with a longer, disordered component (32.9 Å, FWHM = 28 Å) (Fig. 2 B). Together, these measurements indicate the presence of a compact, ordered closed state and a broader, disordered open state. EPR on oriented membranes also indicated two structural states. Global fitting revealed two populations of spin-label tilt angles (orientation of the nitroxide principal axis relative to the membrane normal): a narrow conformation (24°, FWHM = 20°), and a disordered conformation (50°, FWHM = 48°) (Fig. 2 C). This bimodal orientational distribution (Fig. 2 C) is remarkably consistent with the bimodal distance distribution (Fig. 2 B).Open in a separate windowFigure 2EPR spectra (left) of 32-TOAC-DR5 in lipid, and resulting structural distributions (right). (A) CW dipolar EPR spectra (left) of dimer (1 mM diamide) and monomer (1 mM 2-mercaptoethanol). Best-fit spin-spin distance distribution was a single Gaussian centered at 16 ± 2 Å (right). (B) The DEER waveform (left) of 32-TOAC-DR5 dimer was best fit (right) to a two-Gaussian distribution. The short distance was constrained to agree with the CW data, because DEER has poor sensitivity for distances <20 Å. The long-distance distribution is centered at 32.9 Å and is much broader. (C) CW EPR spectra (left) of 32-TOAC-DR5, with the membrane-normal oriented parallel (red) and perpendicular (blue) to the field. Simultaneous (global) fitting of these spectra reveals narrow and broad components (right). (In panels B and C, the overall distribution is plotted as black, while the closed and open components are plotted as green and magenta, respectively.)We subsequently conducted a PMF calculation (10) using the DR5-L TM dimer starting configuration developed by our group previously (3), embedded in a DMPC bilayer, with the Leu-32/Leu-32 Cα distance as the reaction coordinate. Three calculations were run from independent starting configurations, each using 50 windows spaced in 0.5° increments, and run for 20 ns at each window (totaling 3 μs). Each of the calculations yielded a similar result, and the averaged free energy curve (Fig. 3 A) agrees remarkably well with our EPR measurements: a narrow distribution at the closed conformation (∼16 Å, Fig. 3 B) separated by an ∼3 kcal/mol energy barrier from a broad distribution of accessible open conformations at ∼27 Å, (Fig. 3 C). Each of the three individual PMF plots can be found in Fig. S1 in the Supporting Material.Open in a separate windowFigure 3(A) PMF calculation of the DR5 TM domain dimer along the Leu-32/Leu-32 distance reaction coordinate. The PMF calculation reveals a narrow closed state and a broader open state separated by a free energy barrier. Representative snapshots of the (B) closed state and (C) open state.In the closed state, the helices are tightly packed at the GxxxG interfacial motif and all the way down the juxtaposed helix faces at residues Ala-18, Leu-22, Ala-25, and Val-26. The tight packing is aided by kinking and twisting of the two helices around their common axis, increasing the interacting surface area. In the open conformations, the Ala-18, Leu-22, Ala-25, and Val-26 pairs are dissociated and, interestingly, the GxxxG motif at Gly-10 and Gly-14 remains tightly packed. The open state energy well is only slightly less favorable than the closed state (by ∼2 kcal/mol), and its free energy profile is relatively broad and flat. The increased crossing angle in the open state is facilitated by straightening of the helix kink and is not accommodated by a change in bilayer thickness (see Fig. S3, A and B).The observed change in helix-helix distance (11 Å between the two minima in the PMF) is extremely close to that observed previously in live-cell FRET studies of a constitutively active form of TNFR1 (∼8 Å change between states using large fluorescence probes at the cytosolic domains) (4). The change observed in the EPR data (17 Å) may be an overestimate because the measurement is made between TOAC spin labels that likely protrude from the two helices, depending on rotational orientation. These results collectively show that activation of these receptors requires a small, but clearly significant conformational opening of the TM domains. One important note is that our EPR experiments recapitulate the equilibrium distribution of the two states despite there being no driving force to traverse the barrier between them (∼3 kcal/mol in the closed-to-open transition and ∼1 kcal/mol in the open-to-closed transition, Fig. 3). We do not interpret the results to mean that the dimer necessarily traverses these barriers at 4°C. Rather, there likely exist multiple reaction paths for dimerization of the abstracted TM domains. Finally, in the context of the full-length receptor, how the ligand induces a conformational change capable of overcoming the closed-to-open barrier remains an important question.Whether the observed structural transition in the TM domain dimer of the long-isoform of DR5 is a ubiquitous conformational switch that acts over the entire TNFR superfamily remains unknown. Vilar et al. (11) first proposed a similar scissors-model for activation of p75 neurotrophin receptor, which has a cysteine at the center of its TM helix. The short isoform of DR5 lacks a TM domain cysteine, but does form noncovalent dimers in cells, with likely TM domain dimer contacts (3). Among the other closely related and structurally homologous members of the TNFR superfamily, TNFR1 contains a cysteine at the center of the TM domain, but lacks any discernible small residue motifs (e.g., GxxxG). TNFR2 lacks a TM cysteine on the extracellular side, but does have a GxxxG motif positioned similarly to that of DR5. On the other hand, Death Receptor 4, whose functional distinction from DR5 has remained somewhat elusive, lacks both a cysteine and any recognizable small-residue hydrophobic motif.In summary, we have extended recent findings that point to the TM domain of DR5 as an essential structural component in the conformational change associated with activation. Our findings that the DR5-L TM domain occupies distinct open and closed states, separated by a substantial energy barrier, points the way to further studies across the TNF-receptor superfamily.  相似文献   
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号