首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106042篇
  免费   1417篇
  国内免费   894篇
  108353篇
  2022年   127篇
  2021年   227篇
  2020年   140篇
  2019年   185篇
  2018年   12005篇
  2017年   10802篇
  2016年   7744篇
  2015年   1139篇
  2014年   859篇
  2013年   1076篇
  2012年   5136篇
  2011年   13706篇
  2010年   12566篇
  2009年   8735篇
  2008年   10556篇
  2007年   12152篇
  2006年   1020篇
  2005年   1243篇
  2004年   1720篇
  2003年   1723篇
  2002年   1424篇
  2001年   395篇
  2000年   250篇
  1999年   167篇
  1998年   172篇
  1997年   144篇
  1996年   126篇
  1995年   103篇
  1994年   99篇
  1993年   136篇
  1992年   121篇
  1991年   106篇
  1990年   85篇
  1989年   68篇
  1988年   93篇
  1987年   86篇
  1986年   56篇
  1985年   79篇
  1984年   87篇
  1983年   96篇
  1982年   110篇
  1981年   96篇
  1980年   89篇
  1979年   57篇
  1978年   53篇
  1977年   55篇
  1976年   53篇
  1973年   56篇
  1972年   266篇
  1971年   306篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The self-incompatibility of tea plant (Camellia sinensis (L.) O. Kuntze) was studied with the methods of aniline blue fluorescence assay and paraffin sections. The characteristics of pollen tube elongation after hand pollination was analyzed in 4 tea cultivars, including ‘Keemenzhong’, ‘Longjing-changye’, ‘Fuding-dabaicha’ and ‘Yabukita’, under self-pollination and cross-pollination, respectively. Although there were some difference among cultivars, pollen tubes elongated through the style and reach the ovary successfully at 48 h after pollination for both cross- and self-pollen tubes in all the four cultivars of tea. Pollen tubes entered into the ovule micropyles, however, only for cross-pollination, but not for self-pollination. Pollen tubes of selfing plants, failed in fertilizing, seemed have some difficulties to enter the ovule. All of which indicated that the self-incompatibility of tea plant is a late-acting self-incompatibility system (LSI) or an ovarian sterility (OS), in which the self incompatibility was due to none self pollen tube penetrating into the ovule and no fertilization.  相似文献   
942.
The wild soybean (Glycine soja), which is the progenitor of cultivated soybean (Glycine max), is expected to offer more information about genetic variability and more useful mutants for evolutionary research and breeding applications. Here, a total of 1,600 wild soybean samples from China were investigated for genetic variation with regard to the soybean Kunitz trypsin inhibitor (SKTI). A new mutant SKTI, Tik, was identified. It was found to be a Tia-derived codominant allele caused by a transversion point mutation from C to G at nucleotide +171, leading to an alteration of one codon (AAC → AAG) and a corresponding amino acid substitution (Asn → Lys) at the ninth residue. Upon examination of this variant and others previously found in wild soybeans, it became clear that SKTI has undergone high-level evolutionary differentiation. There were more abundant polymorphisms in the wild than in the cultivated soybean.  相似文献   
943.
944.
Osmotic stress and endogenous hormone levels may have a role in shoot organogenesis, but a systematic study has not yet to investigate the links. We evaluated the changes of the endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) levels in rice (Oryza sativa L. cv. Tainan 5) callus during shoot organogenesis induced by exogenous plant growth regulator treatments or under osmotic stress. Non-regenerable callus showed low levels of endogenous ABA and IAA, with no fluctuation in level during the period evaluated. The addition of 100 μM ABA or 2 mM anthranilic acid (IAA precursor) into Murashige and Skoog basal induction medium containing 10 μM 2,4-D enhanced the regeneration frequency slightly, to 5 and 35%, respectively, and their total cellular ABA or IAA levels were increased significantly, correspondingly to the treatments. However, the regeneration frequency was greatly increased to 80% after treatment with 0.6 M sorbitol or 100 μM ABA and 2 mM anthranilic acid combined. Both treatments produced high levels of total cellular ABA and IAA at the callus stage, which was quickly decreased on the first day after transfer to regeneration medium. Thus, osmotic stress-induced simultaneous accumulation of endogenous ABA and IAA is involved in shoot regeneration in rice callus.  相似文献   
945.
946.
ATP-binding cassette transporters perform energy-dependent transmembrane solute trafficking in all organisms. These proteins often mediate cellular resistance to therapeutic drugs and are involved in a range of human genetic diseases. Enzymological studies have implicated a helical subdomain within the ATP-binding cassette nucleotide-binding domain in coupling ATP hydrolysis to solute transport in the transmembrane domains. Consistent with this, structural and computational analyses have indicated that the helical subdomain undergoes nucleotide-dependent movement relative to the core of the nucleotide-binding domain fold. Here we use theoretical methods to examine the allosteric nucleotide dependence of helical subdomain transitions to further elucidate its role in interactions between the transmembrane and nucleotide-binding domains. Unrestrained 30-ns molecular dynamics simulations of the ATP-bound, ADP-bound, and apo states of the MJ0796 monomer support the idea that interaction of a conserved glutamine residue with the catalytic metal mediates the rotation of the helical subdomain in response to nucleotide binding and hydrolysis. Simulations of the nucleotide-binding domain dimer revealed that ATP hydrolysis induces a large transition of one helical subdomain, resulting in an asymmetric conformation of the dimer not observed previously. A coarse-grained elastic network analysis supports this finding, revealing the existence of corresponding dynamic modes intrinsic to the contact topology of the protein. The implications of these findings for the coupling of ATP hydrolysis to conformational changes in the transmembrane domains required for solute transport are discussed in light of recent whole transporter structures.  相似文献   
947.
Chloroplasts are bounded by a pair of outer membranes, the envelope, that is the only permanent membrane structure of the different types of plastids. Chloroplasts have had a long and complex evolutionary past and integration of the envelope membranes in cellular functions is the result of this evolution. Plastid envelope membranes contain a wide diversity of lipids and terpenoid compounds serving numerous biochemical functions and the flexibility of their biosynthetic pathways allow plants to adapt to fluctuating environmental conditions (for instance phosphate deprivation). A large body of knowledge has been generated by proteomic studies targeted to envelope membranes, thus revealing an unexpected complexity of this membrane system. For instance, new transport systems for metabolites and ions have been identified in envelope membranes and new routes for the import of chloroplast-specific proteins have been identified. The picture emerging from our present understanding of plastid envelope membranes is that of a key player in plastid biogenesis and the co-ordinated gene expression of plastid-specific protein (owing to chlorophyll precursors), of a major hub for integration of metabolic and ionic networks in cell metabolism, of a flexible system that can divide, produce dynamic extensions and interact with other cell constituents. Envelope membranes are indeed one of the most complex and dynamic system within a plant cell. In this review, we present an overview of envelope constituents together with recent insights into the major functions fulfilled by envelope membranes and their dynamics within plant cells. Special Issue of Photosynthesis Research in honor of Andrew A. Benson.  相似文献   
948.
The watershed of the Altamaha River, Georgia, is one of the largest in the southeastern U.S., draining 36,718 km2 (including parts of metro Atlanta). We calculated both nitrogen (fertilizer, net food and feed import, atmospheric deposition, and biological N fixation in agricultural and forest lands) and phosphorus (fertilizer and net food and feed import) inputs to the watershed for 6 time points between 1954 and 2002. Total nitrogen inputs rose from 1,952 kg N km−2 yr−1 in 1954 to a peak of 3,593 kg N km−2 yr−1 in 1982 and then declined to 2,582 kg N km−2 yr−1 by 2002. Phosphorus inputs rose from 409 kg P km−2 yr−1 in 1954 to 532 kg P km−2 yr−1 in 1974 before declining to 412 kg P km−2 yr−1 in 2002. Fertilizer tended to be the most important input of both N and P to the watershed, although net food and feed import increased in importance over time and was the dominant source of N input by 2002. When considered on an individual basis, fertilizer input tended to be highest in the middle portions of the watershed (Little and Lower Ocmulgee and Lower Oconee sub-watersheds) whereas net food and feed imports were highest in the upper reaches (Upper Oconee and Upper Ocmulgee sub-watersheds). Although the overall trend in recent years has been towards decreases in both N and P inputs, these trends may be offset due to continuing increases in animal and human populations.  相似文献   
949.
Ditches grown with nature reed (Phragmites communis Trin) and wild rice (Zizania latifolia Turcz) were selected to study the removal capacity of agricultural non-point source pollutants so as to find a way to alleviate eutrophication in Lake Taihu. Ditches sediment from depths below 40 cm can accumulate organic matter and total nitrogen (TN). TN is correlated positively to organic matter in reed populated sediment and wild rice populated sediment. This suggests that the main composition of TN is organic nitrogen derived from plant decomposition. A significant negative relationship between TN and pH was found in reed and wild rice sediments. Seasonal harvest of helophyte vegetation is an effective method to remove N and P from wetlands. Organic matter and TN concentrations in water and sediments (0–20 cm) in areas where reeds were removed are lower than non-harvested areas (control). Reeds and wild rice have high uptake ability of nitrogen (N) and phosphorus (P). However, the low economic value of these plants will not stimulate voluntary harvest of farmers. Zizania caduciflora Turez Hand-mazt is a kind of vegetable widely cultivated in ditches around the lake. It can also absorb N and P effectively. Thus, large scale cultivation of Z. caduciflora to replace nature plants may improve water quality.  相似文献   
950.
The function of conserved novel human genes can be efficiently addressed in genetic model organisms. From a collection of genes expressed in the Drosophila visual system, cDNAs expressed in vertebrates were identified and one similar to a novel human gene was chosen for further investigation. The results reported here characterize the Drosophila retinophilin gene and demonstrate that a similar gene is expressed in the human retina. The Drosophila and human retinophilin sequences are 50% identical, and they share an additional 16% conserved substitutions. Examination of the cDNA and genomic sequence indicates that it corresponds to the gene CG10233 of the annotated genome and predicts a 22.7 kDa protein. Polyclonal antibodies generated to a predicted retinophilin peptide recognize an antigen in Drosophila photoreceptor cells. The retinophilins encode 4 copies of a repeat associated with a Membrane Occupation and Recognition Nexus (MORN) function first discovered in junctophilins, which may interact with the plasma membrane. These results therefore show that Drosophila retinophilin is expressed in fly photoreceptor cells, demonstrate that a conserved human gene is expressed in human retina, and suggest that a mutational analysis of the Drosophila gene would be valuable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号