首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   28篇
  2023年   3篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   21篇
  2013年   19篇
  2012年   22篇
  2011年   24篇
  2010年   17篇
  2009年   15篇
  2008年   20篇
  2007年   24篇
  2006年   13篇
  2005年   18篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1928年   1篇
排序方式: 共有415条查询结果,搜索用时 421 毫秒
81.
82.
The crystal structure of the elicitin beta-cinnamomin (beta-CIN) was determined in complex with ergosterol at 1.1 A resolution. beta-CIN/ergosterol complex crystallized in the monoclinic space group P2(1), with unit cell parameters of a = 31.0, b = 62.8, c = 50.0 A and beta = 93.4 degrees and two molecules in the asymmetric unit. Ligand extraction with chloroform followed by crystallographic analysis yielded a 1.35 A structure of beta-CIN (P4(3)2(1)2 space group) where the characteristic elicitin fold was kept. After incubation with cholesterol, a new complex structure was obtained, showing that the protein retains, after the extraction procedure, its ability to complex sterols. The necrotic effect of beta-CIN on tobacco was also shown to remain unchanged. Theoretical docking studies of the triterpene lupeol to beta-CIN provided an explanation for the apparent inability of beta-CIN to bind this ligand, as observed experimentally.  相似文献   
83.
We have recently taken advantage of the unique power of DNA microarrays to compare the genomic expression profile of tetrahydrogestrinone (THG) with that of dihydrotestosterone (DHT), the most potent natural androgen, thus clearly demonstrating that THG is an anabolic steroid. In 2004, the U.S. Controlled Substances Act has been modified to include androstenedione (4-dione) as an anabolic steroid. However, despite the common knowledge that dehydroepiandrosterone (DHEA) is the precursor of testosterone, DHEA has been excluded from the list of anabolic steroids. We thus used the same DNA microarray technology to analyze the expression profile of practically all the 30,000 genes of the mouse genome modulated by DHEA and DHT in classical androgen-sensitive tissues. Daily subcutaneous injections of DHT (0.1mg) or DHEA (3mg) for 1 month in gonadectomized C57BL6/129 SV mice increased ventral prostate, dorsal prostate, seminal vesicle and preputial gland weight (p<0.01 for all tissues). As early as 24h after single injection of the two steroids, 878, 2681 and 14 probe sets were commonly stimulated or inhibited (p<0.01, change> or =30%), in the prostate (ventral+dorsal), seminal vesicles and preputial glands, respectively, compared to tissues from gonadectomized control animals. After 7 days of daily treatment with DHEA and DHT, 629, 919 and 562 probe sets were commonly modulated in the same tissues while after 27 days of treatment, 1195, 5127 and 2883 probe sets were modulated, respectively. In analogy with the data obtained with THG, the present microarray data provide an extremely precise and unquestionable genomic signature and proof of the androgenic/anabolic activity of DHEA. Such data add to the literature showing that DHEA is transformed into androgens in the human peripheral tissues as well as in laboratory animal species, including the monkey, thus exerting potent androgenic/anabolic activity. The present microarray approach to identify anabolic compounds is applicable to all potential androgenic/anabolic compounds.  相似文献   
84.
Hormonal influences on the organization of behavior are apparent to neuroendocrinologists but under-examined in relation to childhood and adolescent mental disorders. A central mystery in the field of developmental psychopathology is the preferential male vulnerability to behavior disorders in childhood and female vulnerability to emotional disorders in adolescence. Relative neglect of a hormonal explanation may be due to lack of simple or unifying conceptual paradigms to guide studies. This paper seeks to stimulate research in this area by drawing upon clinical psychology and neuroscience literatures to offer a heuristic paradigm for clinical research. Two syndromes are selected here for illustration: Attention-Deficit/Hyperactivity Disorder (ADHD) and Major Depressive Disorder (MDD), because they have opposite gender risk profiles. Two guiding theories are evaluated. First, prenatal organizational effects of testosterone may modulate striatally-based dopaminergic circuits in such a way as to place boys at greater risk for early developing inattention and disruptive behavioral disorders. Second, activational effects of estradiol at puberty may modulate amygdalar and other circuitry, with particular effects on serotonergic pathways, in such a way as to place girls at greater risk for internalizing and mood disorders. Hypotheses from these theories are evaluated based on the current available literature, and limitations of, and future directions for, this literature are discussed.  相似文献   
85.
It is suspected that phagotrophic marine protozoa might possess feeding receptors that enable them to discern the nutritional quality of individual prey items (during prey-handling) on the basis of their cell-surface biochemistry. This article reviews advances in our understanding of the molecular mechanisms that mediate the biorecognition and selection of nonself (microalgal) prey items by the microplanktonic marine phagotroph Oxyrrhis marina. The potential importance of lectin–glycan interactions is first considered in view of findings which demonstrate that O. marina possesses lectin-like feeding receptors specific for prey-surface (mannose) glycoconjugates. Secondly, some conceptual bases for indirect or ‘opsonic’ modes of prey biorecognition mediated by soluble prey-labelling proteins are presented. Finally, the possibility that some accounts of selective feeding in O. marina might result from the noxious effects of prey-associated chemicals rather than active ‘distaste’ by phagotrophic cells is discussed. Recent evidence for toxic superoxide (O2 ) production by marine microalgae is afforded particular attention given that release of O2 anions can be exacerbated by the binding of mannose-specific lectins to the microalgal cell wall; a novel model for grazing-activated chemical defence is proposed.  相似文献   
86.
Different experimental strategies using short columns in both conventional liquid chromatography (HPLC) and ultra‐high pressure liquid chromatography (UHPLC) were evaluated to allow, for the first time with these techniques, the lipophilicity determination of compounds with log P>5. Various organic modifiers, stationary phases, and elution modes were tested on 14 rigid compounds with a CLogP between 5 and 8, and 38 compounds with log Poct from 0 to 5. The best results in HPLC were obtained with the 20‐mm Discovery ® RP Amide C16 stationary phase in isocratic mode using MeOH as organic modifier. To improve analysis time, the UHPLC approach was then evaluated. Consequently, a generic method was developed with a 30‐mm Acquity BEH Shield RP18 column in gradient mode using MeOH as organic modifier, allowing a fourfold gain of time compared to the HPLC method, for the highly lipophilic compounds tested. Finally, the most rapid and accurate results were obtained with a 10‐mm HypersilTM GOLD Javelin HTS stationary phase in UHPLC, enabling an eightfold gain of time compared to the HPLC method.  相似文献   
87.
88.
The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1–4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.  相似文献   
89.

Background

CTX-M-producing Escherichia coli strains are regarded as major global pathogens.

Methodology/Principal Findings

The nucleotide sequence of three plasmids (pEC_B24: 73801-bp; pEC_L8: 118525-bp and pEC_L46: 144871-bp) from Escherichia coli isolates obtained from patients with urinary tract infections and one plasmid (pEC_Bactec: 92970-bp) from an Escherichia coli strain isolated from the joint of a horse with arthritis were determined. Plasmid pEC_Bactec belongs to the IncI1 group and carries two resistance genes: bla TEM-1 and bla CTX-M-15. It shares more than 90% homology with a previously published bla CTX-M-plasmid from E. coli of human origin. Plasmid pEC_B24 belongs to the IncFII group whereas plasmids pEC_L8 and pEC_L46 represent a fusion of two replicons of type FII and FIA. On the pEC_B24 backbone, two resistance genes, bla TEM-1 and bla CTX-M-15, were found. Six resistance genes, bla TEM-1, bla CTX-M-15, bla OXA-1, aac6''-lb-cr, tetA and catB4, were detected on the pEC_L8 backbone. The same antimicrobial drug resistance genes, with the exception of tetA, were also identified on the pEC_L46 backbone. Genome analysis of all 4 plasmids studied provides evidence of a seemingly frequent transposition event of the bla CTX-M-15-ISEcp1 element. This element seems to have a preferred insertion site at the tnpA gene of a bla TEM-carrying Tn3-like transposon, the latter itself being inserted by a transposition event. The IS26-composite transposon, which contains the bla OXA-1, aac6''-lb-cr and catB4 genes, was inserted into plasmids pEC_L8 and pEC_L46 by homologous recombination rather than a transposition event. Results obtained for pEC_L46 indicated that IS26 also plays an important role in structural rearrangements of the plasmid backbone and seems to facilitate the mobilisation of fragments from other plasmids.

Conclusions

Collectively, these data suggests that IS26 together with ISEcp1 could play a critical role in the evolution of diverse multiresistant plasmids found in clinical Enterobacteriaceae.  相似文献   
90.
Candida albicans is the primary fungal pathogen of humans. Despite the need for novel drugs to combat fungal infections [Sobel, J.D. (2000) Clin Infectious Dis 30: 652], antifungal drug discovery is currently limited by both the availability of suitable drug targets and assays to screen corresponding targets. A functional genomics approach based on the diploid C. albicans genome sequence, termed GRACETM (gene replacement and conditional expression), was used to assess gene essentiality through a combination of gene replacement and conditional gene expression. In a systematic application of this approach, we identify 567 essential genes in C. albicans. Interestingly, evaluating the conditional phenotype of all identifiable C. albicans homologues of the Saccharomyces cerevisiae essential gene set [Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Nature 418: 387-391] by GRACE revealed only 61% to be essential in C. albicans, emphasizing the importance of performing such studies directly within the pathogen. Construction of this conditional mutant strain collection facilitates large-scale examination of terminal phenotypes of essential genes. This information enables preferred drug targets to be selected from the C. albicans essential gene set by phenotypic information derived both in vitro, such as cidal versus static terminal phenotypes, as well as in vivo through virulence studies using conditional strains in an animal model of infection. In addition, the combination of phenotypic and bioinformatic analyses further improves drug target selection from the C. albicans essential gene set, and their respective conditional mutant strains may be directly used as sensitive whole-cell assays for drug screening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号