首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   17篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   15篇
  2014年   10篇
  2013年   21篇
  2012年   23篇
  2011年   21篇
  2010年   12篇
  2009年   14篇
  2008年   24篇
  2007年   21篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   14篇
  2002年   16篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1986年   1篇
  1974年   1篇
排序方式: 共有285条查询结果,搜索用时 31 毫秒
151.
152.
153.
There are conflicting data about the frequency and role of regulatory T cells (Tregs) during the course of HIV infection. Peripheral blood of a large cohort of HIV-infected patients (n = 131) at different stages of disease, including 15 long-term nonprogressors and 21 elite controllers, was analyzed to determine the frequency and phenotype of Tregs, defined as CD4(+), CD25(high), CD127(low), FoxP3(high) cells. A significantly increased relative frequency of Tregs within the CD4(+) compartment of HIV(+) patients compared to that of healthy controls (P < 0.0001) was observed. Additionally, the relative frequency of Tregs directly correlated with HIV viral load and inversely with CD4(+) counts. However, the absolute Treg number was reduced in HIV-infected patients versus healthy controls (P < 0.0001), with the exception of elite controllers (P > 0.05). The loss of absolute Treg numbers coincided with rising markers of immune activation (P < 0.0006). The initiation of antiviral therapy significantly increased absolute Treg numbers (P < 0.0031). We find that the expression of CD39, a newly defined ectonucleotidase with immunomodulatory functions on Tregs, correlated with progressive HIV disease, HIV viral load, and immune activation. Of note, when tested in peripheral blood mononuclear cells of healthy volunteers, the in vitro capacity to suppress T-cell proliferation was limited to CD4(+), CD25(high), CD39(+) T cells. Interestingly, Tregs of elite controllers exhibited not only the highest expression of CCR5, CTLA-4, and ICOS but also the lowest level of CD39. The data presented here reconcile the seemingly contradictory results of previous studies looking at Tregs in HIV and highlight the complexity of Treg-mediated immunoregulation during human viral infections.  相似文献   
154.
Imidacloprid, sulfoxaflor and two experimental sulfoximine insecticides caused generally depressive symptoms in stick insects, characterized by stillness and weakness, while also variably inducing postural changes such as persistent ovipositor opening, leg flexion or extension and abdomen bending that could indicate excitation of certain neural circuits. We examined the same compounds on nicotinic acetylcholine receptors in stick insect neurons, which have previously been shown to desensitize in the presence of ACh. Brief U-tube application of 10−4 M solutions of insecticides for 1 s evoked currents that were much smaller than ACh-evoked currents, and depressed subsequent ACh-evoked currents for several minutes, indicating that the compounds are low-efficacy partial agonists that potently desensitize the receptors. Much lower concentrations of insecticides applied in the bath for longer periods did not activate currents, but inhibited ACh-evoked currents via desensitization of the receptors. Previously described fast- and slowly-desensitizing nACh currents, IACh1 and IACh2 respectively, were each found to consist of two components with differing sensitivities to the insecticides. Imidacloprid applied in the bath desensitized high-sensitivity components, IACh1H and IACh2H with IC50s of 0.18 and 0.13 pM, respectively. It desensitized the low-sensitivity slowly desensitizing component, IACh2L, with an IC50 of 2.6 nM, while a component of the fast-desensitizing current, IACh1L, was least sensitive, with an IC50 of 81 nM IACh1L appeared to be insensitive to the three sulfoximines tested, whereas all three sulfoximines potently desensitized IACh1H and both slowly desensitizing components, with IC50s between 2 and 7 nM. We conclude that selective desensitization of certain nAChR subtypes can account for the insecticidal actions of imidacloprid and sulfoximines in stick insects.  相似文献   
155.
This article presents the use of continuous dynamic models in the form of differential equations to describe and predict temporal changes in biological processes and discusses several of its important advantages over discontinuous bistable ones, exemplified on the stick insect walking system. In this system, coordinated locomotion is produced by concerted joint dynamics and interactions on different dynamical scales, which is therefore difficult to understand. Modeling using differential equations possesses, in general, the potential for the inclusion of biological detail, the suitability for simulation, and most importantly, parameter manipulation to make predictions about the system behavior. We will show in this review article how, in case of the stick insect walking system, continuous dynamical system models can help to understand coordinated locomotion.  相似文献   
156.
This article presents modular recurrent neural network controllers for single legs of a biomimetic six-legged robot equipped with standard DC motors. Following arguments of Ekeberg et?al. (Arthropod Struct Dev 33:287?C300, 2004), completely decentralized and sensori-driven neuro-controllers were derived from neuro-biological data of stick-insects. Parameters of the controllers were either hand-tuned or optimized by an evolutionary algorithm. Employing identical controller structures, qualitatively similar behaviors were achieved for robot and for stick insect simulations. For a wide range of perturbing conditions, as for instance changing ground height or up- and downhill walking, swing as well as stance control were shown to be robust. Behavioral adaptations, like varying locomotion speeds, could be achieved by changes in neural parameters as well as by a mechanical coupling to the environment. To a large extent the simulated walking behavior matched biological data. For example, this was the case for body support force profiles and swing trajectories under varying ground heights. The results suggest that the single-leg controllers are suitable as modules for hexapod controllers, and they might therefore bridge morphological- and behavioral-based approaches to stick insect locomotion control.  相似文献   
157.
Legged locomotion requires that information local to one leg, and inter-segmental signals coming from the other legs are processed appropriately to establish a coordinated walking pattern. However, very little is known about the relative importance of local and inter-segmental signals when they converge upon the central pattern generators (CPGs) of different leg joints. We investigated this question on the CPG of the middle leg coxa?Ctrochanter (CTr)-joint of the stick insect which is responsible for lifting and lowering the leg. We used a semi-intact preparation with an intact front leg stepping on a treadmill, and simultaneously stimulated load sensors of the middle leg. We found that middle leg load signals induce bursts in the middle leg depressor motoneurons (MNs). The same local load signals could also elicit rhythmic activity in the CPG of the middle leg CTr-joint when the stimulation of middle leg load sensors coincided with front leg stepping. However, the influence of front leg stepping was generally weak such that front leg stepping alone was only rarely accompanied by switching between middle leg levator and depressor MN activity. We therefore conclude that the impact of the local sensory signals on the levator?Cdepressor motor system is stronger than the inter-segmental influence through front leg stepping.  相似文献   
158.
159.
160.
Hill-type parameter values measured in experiments on single muscles show large across-muscle variation. Using individual-muscle specific values instead of the more standard approach of across-muscle means might therefore improve muscle model performance. We show here that using mean values increased simulation normalized RMS error in all tested motor nerve stimulation paradigms in both isotonic and isometric conditions, doubling mean simulation error from 9 to 18 (different at p?<?0.0001). These data suggest muscle-specific measurement of Hill-type model parameters is necessary in work requiring highly accurate muscle model construction. Maximum muscle force (F max) showed large (fourfold) across-muscle variation. To test the role of F max in model performance we compared the errors of models using mean F max and muscle-specific values for the other model parameters, and models using muscle-specific F max values and mean values for the other model parameters. Using muscle-specific F max values did not improve model performance compared to using mean values for all parameters, but using muscle-specific values for all parameters but F max did (to an error of 14, different from muscle-specific, mean all parameters, and mean only F max errors at p?≤ 0.014). Significantly improving model performance thus required muscle-specific values for at least a subset of parameters other than F max, and best performance required muscle-specific values for this subset and F max. Detailed consideration of model performance suggested that remaining model error likely stemmed from activation of both fast and slow motor neurons in our experiments and inadequate specification of model activation dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号