首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   26篇
  2020年   5篇
  2018年   9篇
  2016年   6篇
  2015年   18篇
  2014年   18篇
  2013年   18篇
  2012年   23篇
  2011年   22篇
  2010年   22篇
  2009年   15篇
  2008年   17篇
  2007年   18篇
  2006年   26篇
  2005年   27篇
  2004年   28篇
  2003年   24篇
  2002年   28篇
  2001年   6篇
  1999年   6篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   9篇
  1992年   10篇
  1991年   10篇
  1990年   17篇
  1989年   7篇
  1988年   17篇
  1987年   12篇
  1986年   14篇
  1985年   11篇
  1984年   14篇
  1983年   4篇
  1982年   5篇
  1981年   8篇
  1979年   3篇
  1978年   7篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1974年   8篇
  1973年   5篇
  1972年   4篇
  1971年   7篇
  1970年   4篇
  1969年   4篇
  1968年   4篇
  1967年   6篇
  1966年   3篇
排序方式: 共有580条查询结果,搜索用时 125 毫秒
21.
Genetic screening of Saccharomyces cerevisiae mutants defective in Ca2+ homeostasis identified cls2, which exhibits a specific Ca2+-sensitive growth phenotype. We describe here the CLS2 gene and a multicopy suppressor (named BCL21, for bypass of CLS2) of the cls2 mutation. The CLS2 gene encodes a polypeptide of 410 amino acid residues, and its hydropathy profile indicates that the predicted Cls2 protein (Cls2p) contains ten putative membrane spanning regions. Immunofluorescent staining of the yeast cells expressing epitopetagged Cls2p suggests that Cls2p is localized to endoplasmatic reticulum (ER) membrane. A cls2 disruption strain is viable, but shows a Ca2+-sensitive phenotype like the original cls2 mutants. BCL21 suppresses the cls2 disruption mutation, indicating that the multicopy suppression does not require the Cls2p. Suppression of cls2 was observed even after introduction of a singlecopy plasmid harboring BCL21. The BCL21 gene encodes a protein of 382 amino acid residues and is identical to the SUR1 gene. sur1 was originally isolated as a suppressor of rvs161, which has reduced viability in nutrient starvation conditions. Possible mechanisms of the multicopy suppression are discussed.  相似文献   
22.
Acidification inside the vacuo-lysosome systems is ubiquitous in eukaryotic organisms and essential for organelle functions. The acidification of these organelles is accomplished by proton-translocating ATPase belonging to the V-type H+-ATPase superfamily. However, in terms of chemiosmotic energy transduction, electrogenic proton pumping alone is not sufficient to establish and maintain those compartments inside acidic. Current studies have shown that thein situ acidification depends upon the activity of V-ATPase and vacuolar anion conductance; the latter is required for shunting a membrane potential (interior positive) generated by the positively charged proton translocation. Yeast vacuoles possess two distinct Cl transport systems both participating in the acidification inside the vacuole, a large acidic compartment with digestive and storage functions. These two transport systems have distinct characteristics for their kinetics of Cl uptake or sensitivity to a stilbene derivative. One shows linear dependence on a Cl concentration and is inhibited by 4,4-diisothiocyano-2,2-stilbenedisulfonic acid (DIDS). The other shows saturable kinetics with an apparentK m for Cl of approximately 20 mM. Molecular mechanisms of the chemiosmotic coupling in the vacuolar ion transport and acidification inside are discussed in detail.  相似文献   
23.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
24.
25.
Geranylgeranyl transferase I (GGTase I), which modifies proteins containing the sequence Cys-Ali-Ali-Leu (Ali: aliphatic) at their C-termini, is indispensable for growth in the budding yeast Saccharomyces cerevisiae. We report here that GGTase I is no longer essential when Rho1p and Cdc42p are simultaneously overproduced. The lethality of a GGTase I deletion is most efficiently suppressed by provision of both Rho1p and Cdc42p with altered C-terminal sequences (Cys-Ali-Ali-Met) corresponding to the C-termini of substrates of farnesyl transferase (FTase). Under these circumstances, the FTase, normally not essential for growth of yeast, becomes essential.  相似文献   
26.
27.
28.
The cytochrome bo complex is a terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli (Kita, K., Konishi, K., and Anraku, Y. (1984) J. Biol. Chem. 259, 3368-3374) and functions as a proton pump. It belongs to the heme-copper oxidase superfamily with the aa3-type cytochrome c oxidases in mitochondria and aerobic bacteria. In order to identify ligands of hemes and copper, we have substituted eight conserved histidines in subunit I by alanine and, in addition, His-106, -284, and -421 by glutamine and methionine. Western immunoblotting analysis showed that all the mutations do not affect the expression level of subunit I in the cytoplasmic membrane, indicating that these histidines are not crucial for its stability. A single copy expression vector carrying a single mutation at the invariant histidines, His-106, His-284, His-333, His-334, His-419, and His-421, of subunit I was unable to support the aerobic growth of a strain in which the chromosomal terminal oxidase genes (the cyo and cyd operons) have been deleted. The same mutations caused a complete loss of ubiquinol oxidase activity of the partially purified enzymes. Spectroscopic analysis of mutant oxidases in the cytoplasmic membrane revealed that substitutions of His-106 and -421 specifically eliminated a 563.5 nm peak of the low spin heme and that replacements of His-106, -284, and -419 reduced the extent of the CO-binding high spin heme. These spectroscopic properties of mutant oxidases were further confirmed with partially purified preparations. Atomic absorption analysis showed that substitutions of His-106, -333, -334, and -419 eliminated CuB almost completely. Based on these findings, we conclude that His-106 and -421 function as the axial ligands of the low spin heme and His-284 is a possible ligand of the high spin heme. His-333, -334, and -419 residues are attributed to the ligands of CuB. We present a helical wheel model of the redox center in subunit I, which consists of the membrane-spanning regions II, VI, VII, and X, and discuss the implications of the model.  相似文献   
29.
VAM7 gene function has shown to be required for proper morphogenesis of the vacuole in yeast. The DNA fragments that complemented the defective vacuolar morphology of the vam7-1 mutation were isolated from a yeast genomic library. An overlapping 2.5-kilobase BglII-HindIII region was found to be sufficient for complementation of the vam7-1 phenotype. This fragment was integrated at the chromosomal VAM7 locus, indicating that it contained an authentic VAM7 gene. On nucleotide sequencing of the VAM7 gene, an open reading frame of 948 base pairs, coding for a hydrophilic polypeptide of 316 amino acid residues, was identified. The deduced amino acid sequence of the carboxyl-terminal region of the VAM7 gene product has heptad repeats and shows potential ability to form a coiled-coil structure. Disruption of VAM7 was not lethal; cells with a disrupted VAM7 gene did not, however, have a prominent large vacuoles but rather numerous small compartments that accumulated the histochemical marker molecule of the vacuolar compartment. They contained mature forms of the vacuolar marker proteins carboxypeptidase Y and vacuolar glycoprotein vgp72. A mutant with both vam7 and vam5 null mutations was constructed and shown to have neither vacuolar structures stained with ade-related fluorochrome nor mature forms of vacuolar marker proteins. These findings suggested that the VAM7 gene product functions in the process of morphogenic assembly of the vacuolar compartment but is not involved in the protein sorting and delivery to the vacuole.  相似文献   
30.
G. -H. Sun  Y. Ohya  Y. Anraku 《Protoplasma》1992,166(1-2):110-113
Summary Intracellular localization of calmodulin was examined in the budding yeast,Saccharomyces cerevisiae. Distribution of calmodulin changes in a characteristic way during the cell cycle. Calmodulin localizes to a patch at the presumptive bud site of unbudded cells. It concentrates at the bud tip in small-budded cells, and later it diffuses throughout the entire bud. At cytokinesis, calmodulin is largely at the neck between the mother and daughter cells. Double staining experiments have shown that the location of some polarized actin dots is coincident with that of calmodulin dots. Polarized localization of actin dots is observed in cells depleted of calmodulin, suggesting that calmodulin is not required for localization of the actin dots. Thecdc24 mutant that has a defect in bud assembly at the restrictive temperature fails to exhibit polarized localization of calmodulin, indicating that theCDC24 gene product is responsible for controlling the polarity of calmodulin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号