首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   64篇
  598篇
  2023年   4篇
  2022年   11篇
  2021年   21篇
  2020年   9篇
  2019年   7篇
  2018年   11篇
  2017年   13篇
  2016年   27篇
  2015年   34篇
  2014年   45篇
  2013年   46篇
  2012年   41篇
  2011年   49篇
  2010年   25篇
  2009年   24篇
  2008年   27篇
  2007年   29篇
  2006年   16篇
  2005年   20篇
  2004年   25篇
  2003年   24篇
  2002年   21篇
  2001年   11篇
  2000年   10篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1989年   5篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有598条查询结果,搜索用时 0 毫秒
11.
KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d) cells. c-Cbl mediates the translocation of virus bound α3β1 and αVβ3 integrins into lipid rafts (LRs), where KSHV interacts and activates EphrinA2 (EphA2). EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s) coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1) associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope) and BrdU (viral DNA) labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2''s association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s) to coordinate and sustain the EphA2 mediated signaling involved in its entry, and CIB1 is an attractive therapeutic target to block KSHV infection.  相似文献   
12.
Obesity is a major global public health concern. Immune responses implicated in obesity also control certain infections. We investigated the effects of high‐fat diet‐induced obesity (DIO) on infection with the Lyme disease bacterium Borrelia burgdorferi in mice. DIO was associated with systemic suppression of neutrophil‐ and macrophage‐based innate immune responses. These included bacterial uptake and cytokine production, and systemic, progressive impairment of bacterial clearance, and increased carditis severity. B. burgdorferi‐infected mice fed normal diet also gained weight at the same rate as uninfected mice fed high‐fat diet, toll‐like receptor 4 deficiency rescued bacterial clearance defects, which greater in female than male mice, and killing of an unrelated bacterium (Escherichia coli) by bone marrow‐derived macrophages from obese, B. burgdorferi‐infected mice was also affected. Importantly, innate immune suppression increased with infection duration and depended on cooperative and synergistic interactions between DIO and B. burgdorferi infection. Thus, obesity and B. burgdorferi infection cooperatively and progressively suppressed innate immunity in mice.  相似文献   
13.
The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (∼81%), Spirochaetes (∼7%) and Chloroflexi (∼3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.  相似文献   
14.
15.
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1‐11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane‐spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O‐layer inserted in the outer membrane and the I‐layer inserted in the inner membrane. While the structure of the O‐layer has been solved by X‐ray crystallography, there is no detailed structural information on the I‐layer. Using high‐resolution cryo‐electron microscopy and molecular modelling combined with biochemical approaches, we determined the I‐layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.  相似文献   
16.
17.
18.
19.
20.
Fusarium infection of bananas is a global problem that threatens the production of bananas. This study looks at the effects of the infection upon the reactive oxygen species (ROS) system, as well as the induced antioxidant properties in the roots, stems, leaves and fruits. Results show that there is a greater amount of damage in infected tissue samples as opposed to non‐infected. The damage was observed to be higher in the root samples. ROS assays were divided into two classes: ROS assays and ROS‐scavenging assays. Of the ROS assays, lipoxygenase was observed to be higher in the infected samples, while peroxidase (POD) and polyphenol oxidase (PPO) were significantly higher in infected stem, leaf and fruit samples. Among root samples, there was no significant difference in POD activity and PPO was lower in infected samples. Induction of ROS is important for the hypersensitive response (HR) to function properly. The ROS‐scavenging enzymes, namely ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, exhibited higher levels in the infected tissue. This is most likely to counter the build‐up of the ROS enzymes and to prevent further cell death. The increase in ROS‐scavenging assays also correlates with higher antioxidant properties as antioxidants play a critical role in regulating the HR free radicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号