首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1165篇
  免费   103篇
  2024年   2篇
  2023年   10篇
  2022年   17篇
  2021年   47篇
  2020年   30篇
  2019年   28篇
  2018年   30篇
  2017年   35篇
  2016年   41篇
  2015年   75篇
  2014年   76篇
  2013年   69篇
  2012年   121篇
  2011年   83篇
  2010年   58篇
  2009年   48篇
  2008年   65篇
  2007年   64篇
  2006年   41篇
  2005年   36篇
  2004年   44篇
  2003年   43篇
  2002年   38篇
  2001年   14篇
  2000年   6篇
  1999年   14篇
  1998年   6篇
  1997年   12篇
  1996年   8篇
  1995年   14篇
  1994年   6篇
  1993年   15篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   3篇
  1968年   2篇
  1958年   1篇
排序方式: 共有1268条查询结果,搜索用时 31 毫秒
81.
OBJECTIVE: To determine the proliferation rates of mesothelial cells in metastatic and benign effusions. STUDY DESIGN: Immunohistochemistry was performed on formalin-fixed pellets from 16 malignant and 9 benign clinical effusions. Dual staining with antibodies against Ki-67 (MIB-1) and desmin was applied to all effusions to differentiate between benign mesothelial cells and malignant cells, and the proportions of desmin+/Ki-67+ and desmin+/Ki-67- cells were calculated. RESULTS: In 7 malignant effusions no proliferating mesothelial cells were found, whereas some rate of proliferation could always be demonstrated in mesothelial cells in the benign effusions. Further, the median proportions of proliferating cells, malignant 2% vs. benign 11%, differed significantly. CONCLUSIONS: To our knowledge this finding has not been previously described, and it may have implications for both cytologic diagnosis and the understanding of tumor biology and the interaction between tumor cells and mesothelial cells.  相似文献   
82.

Background  

Pathogenic yersiniae (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica) share a virulence plasmid encoding a type three secretion system (T3SS). This T3SS comprises more than 40 constituents. Among these are the transport substrates called Yops (Yersinia outer proteins), the specific Yop chaperones (Sycs), and the Ysc (Yop secretion) proteins which form the transport machinery. The effectors YopO and YopP are encoded on an operon together with SycO, the chaperone of YopO. The characterization of SycO is the focus of this study.  相似文献   
83.
We have used a simplified gnotobiotic mouse model to evaluate the effects of single bacterial species, Lactobacillus paracasei NCC2461, on the metabolic profiles of intact intestinal tissues using high-resolution magic-angle-spinning 1H NMR spectroscopy (HRMAS). A total of 24 female gnotobiotic mice were divided into three groups: a control group supplemented with water and two groups supplemented with either live L. paracasei or a gamma-irradiated equivalent. HRMAS was used to characterize the biochemical components of intact epithelial tissues from the duodenum, jejunum, ileum, proximal, and distal colons in all animals and data were analyzed using chemometrics. Variations in relative concentrations of amino acids, anti-oxidant, and creatine were observed relating to different physiological properties in each intestinal tissue. Metabolic characteristics of lipogenesis and fat storage were observed in the jejunum and colon. Colonization with live L. paracasei induced region-dependent changes in the metabolic profiles of all intestinal tissues, except for the colon, consistent with modulation of intestinal digestion, absorption of nutrients, energy metabolism, lipid synthesis and protective functions. Ingestion of gamma-irradiated bacteria produced no effects on the observed metabolic profiles. 1H MAS NMR spectroscopy was able to generate characteristic metabolic signatures reflecting the structure and function of intestinal tissues. These signals acted as reference profiles with which to compare changes in response to gut microbiota manipulation at the tissue level as demonstrated by ingestion of a bacterial probiotic.  相似文献   
84.
85.
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)‐379/410 genomic cluster as a key component of GC/GR‐driven metabolic dysfunction. Particularly, miR‐379 was up‐regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR‐dependent manner. Hepatocyte‐specific silencing of miR‐379 substantially reduced circulating very‐low‐density lipoprotein (VLDL)‐associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR‐379 effects on key receptors in hepatic TG re‐uptake. As hepatic miR‐379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR‐controlled miRNA cluster not only defines a novel layer of hormone‐dependent metabolic control but also paves the way to alternative miRNA‐based therapeutic approaches in metabolic dysfunction.  相似文献   
86.
87.
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N′-((5′-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.  相似文献   
88.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   
89.
(Eco)toxicity studies conducted according to internationally standardized test guidelines are often considered reliable by default and preferred as key evidence in regulatory risk assessment. At the same time regulatory agencies emphasize the use of all relevant (eco)toxicity data in the risk assessment process, including non-standard studies. However, there is a need to facilitate the use of such studies in regulatory risk assessment. Therefore, we propose a framework that facilitates a systematic and transparent evaluation of the reliability and relevance of (eco)toxicity in vivo studies for health and environmental risk assessment. The framework includes specific criteria to guide study evaluation, as well as a color-coding tool developed to aid the application of these criteria. In addition we provide guidance intended for researchers on how to report non-standard studies to ensure that they meet regulatory requirements. The intention of the evaluating and reporting criteria is to increase the usability of all relevant data that may fill information gaps in chemical risk assessments. The framework is publically available online, free of charge, at the Science in Risk Assessment and Policy (SciRAP) website: www.scirap.org. The aim of this article is to present the framework and resources available at the SciRAP website.  相似文献   
90.
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号