首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   80篇
  1096篇
  2024年   2篇
  2023年   11篇
  2022年   19篇
  2021年   44篇
  2020年   27篇
  2019年   27篇
  2018年   29篇
  2017年   32篇
  2016年   35篇
  2015年   70篇
  2014年   70篇
  2013年   65篇
  2012年   113篇
  2011年   79篇
  2010年   51篇
  2009年   44篇
  2008年   58篇
  2007年   58篇
  2006年   36篇
  2005年   31篇
  2004年   40篇
  2003年   40篇
  2002年   32篇
  2001年   6篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1993年   9篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1096条查询结果,搜索用时 0 毫秒
81.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   
82.
Effects of simulated environmental change on bryophyte and lichen species richness and diversity in alpine tundra were investigated in a 5-year experiment at Latnjajaure, northern Sweden. The experiment had a factorial design including fertilisation and temperature enhancement in one meadow and one heath plant community. Responses in species richness, biodiversity, and species composition of bryophytes and lichens to experimental treatments were compared to the observed variation in six naturally occurring plant communities. The combination of fertilisation and enhanced temperature resulted in a species impoverishment, for bryophytes in the bryophyte-dominated community, and for lichens in the lichen-dominated communities, but the species composition stayed within the observed natural variation. During the course of the study, no species new to the investigated mid-alpine landscape were recorded, but that scenario is realistic within a decade when comparing with the processes seen in vascular plants.  相似文献   
83.

Background

Abnormalities of the intracellular metabolism of the hydrophobic surfactant proteins SP-B and SP-C and their precursors may be causally linked to chronic childhood diffuse lung diseases. The profile of these proteins in the alveolar space is unknown in such subjects.

Methods

We analyzed bronchoalveolar lavage fluid by Western blotting for SP-B, SP-C and their proforms in children with pulmonary alveolar proteinosis (PAP, n = 15), children with no SP-B (n = 6), children with chronic respiratory distress of unknown cause (cRD, n = 7), in comparison to children without lung disease (n = 15) or chronic obstructive bronchitis (n = 19).

Results

Pro-SP-B of 25–26 kD was commonly abundant in all groups of subjects, suggesting that their presence is not of diagnostic value for processing defects. In contrast, pro-SP-B peptides cleaved off during intracellular processing of SP-B and smaller than 19–21 kD, were exclusively found in PAP and cRD. In 4 of 6 children with no SP-B, mutations of SFTPB or SPTPC genes were found. Pro-SP-C forms were identified at very low frequency. Their presence was clearly, but not exclusively associated with mutations of the SFTPB and SPTPC genes, impeding their usage as candidates for diagnostic screening.

Conclusion

Immuno-analysis of the hydrophobic surfactant proteins and their precursor forms in bronchoalveolar lavage is minimally invasive and can give valuable clues for the involvement of processing abnormalities in pediatric pulmonary disorders.  相似文献   
84.
The impact of nutrient enrichment on the phytoplankton community structure, and particularly cyanobacteria, was studied in a 3-week mesocosm experiment conducted in August 2001 in the Archipelago Sea, a part of the northern Baltic Sea. The factorial design experiment included daily additions of nitrogen (N) and phosphorus (P) at two mass ratios, 1N:1P and 7N:1P, respectively, additions of iron (Fe) and a synthetic chelator, ethylenediaminetetraacetic acid (EDTA). The floating enclosures (400 l) were sampled for analyses of phytoplankton biomass and community structure, phytoplankton primary production, chlorophyll a, nutrients, and hepatotoxins. Chlorophyll a concentration, phytoplankton biomass and primary production increased most in the 7N:1P treatment. The increase was mainly due to an abundant growth of chlorophytes (Dictyosphaerium subsolitarium, Kirchneriella spp., Monoraphidium contortum, and Oocystis spp.), pennate diatoms (especially Nitzschia spp.), dinophytes and the chroococcalean cyanobacterium Synechococcus sp. The nutrient enrichments had no effect on the total biomass of N2-fixing cyanobacteria. Nevertheless, the biomass of Anabaena spp. was highest in the enrichments with a low N/P ratio. Chlorophyll a concentration and total phytoplankton biomass were not affected by Fe or EDTA, but Fe alone had a positive effect on the chlorophyte Kirchneriella sp. The N2-fixing cyanobacteria Aphanizomenon sp. responded positively to Fe alone and to both Fe and EDTA added together. The hepatotoxin concentration increased during the experiment, but no clear responses to nutrient enrichments were found. Our study showed species-specific responses to nutrient enrichments among the N2-fixing cyanobacteria. Although the total phytoplankton production was not Fe-limited; the availability of Fe clearly affected the phytoplankton community structure.  相似文献   
85.
Bryophytes achieve substantial biomass and play several key functional roles in boreal forests that can influence how carbon (C) and nitrogen (N) cycling respond to atmospheric deposition of reactive nitrogen (Nr). They associate with cyanobacteria that fix atmospheric N2, and downregulation of this process may offset anthropogenic Nr inputs to boreal systems. Bryophytes also promote soil C accumulation by thermally insulating soils, and changes in their biomass influence soil C dynamics. Using a unique large-scale (0.1 ha forested plots), long-term experiment (16 years) in northern Sweden where we simulated anthropogenic Nr deposition, we measured the biomass and N2-fixation response of two bryophyte species, the feather mosses Hylocomium splendens and Pleurozium schreberi. Our data show that the biomass declined for both species; however, N2-fixation rates per unit mass and per unit area declined only for H. splendens. The low and high treatments resulted in a 29% and 54% reduction in total feather moss biomass, and a 58% and 97% reduction in total N2-fixation rate per unit area, respectively. These results help to quantify the sensitivity of feather moss biomass and N2 fixation to chronic Nr deposition, which is relevant for modelling ecosystem C and N balances in boreal ecosystems.  相似文献   
86.
All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.  相似文献   
87.
88.
89.
Multiple pathways exist to repair DNA damage induced by methylating and crosslinking agents in Arabidopsis thaliana. The SWI2/SNF2 translocase RAD5A, the functional homolog of budding yeast Rad5 that is required for the error‐free branch of post‐replicative repair, plays a surprisingly prominent role in the repair of both kinds of lesions in Arabidopsis. Here we show that both the ATPase domain and the ubiquitination function of the RING domain of the Arabidopsis protein are essential for the cellular response to different forms of DNA damage. To define the exact role of RAD5A within the complex network of DNA repair pathways, we crossed the rad5a mutant line with mutants of different known repair factors of Arabidopsis. We had previously shown that RAD5A acts independently of two main pathways of replication‐associated DNA repair defined by the helicase RECQ4A and the endonuclease MUS81. The enhanced sensitivity of all double mutants tested in this study indicates that the repair of damaged DNA by RAD5A also occurs independently of nucleotide excision repair (AtRAD1), single‐strand break repair (AtPARP1), as well as microhomology‐mediated double‐strand break repair (AtTEB). Moreover, RAD5A can partially complement for a deficient AtATM‐mediated DNA damage response in plants, as the double mutant shows phenotypic growth defects.  相似文献   
90.
Glycerol dibiphytanyl glycerol tetraether (GDGT)-based intact membrane lipids are increasingly being used as complements to conventional molecular methods in ecological studies of ammonia-oxidizing archaea (AOA) in the marine environment. However, the few studies that have been done on the detailed lipid structures synthesized by AOA in (enrichment) culture are based on species enriched from nonmarine environments, i.e., a hot spring, an aquarium filter, and a sponge. Here we have analyzed core and intact polar lipid (IPL)-GDGTs synthesized by three newly available AOA enriched directly from marine sediments taken from the San Francisco Bay estuary ("Candidatus Nitrosoarchaeum limnia"), and coastal marine sediments from Svalbard, Norway, and South Korea. Like previously screened AOA, the sedimentary AOA all synthesize crenarchaeol (a GDGT containing a cyclohexane moiety and four cyclopentane moieties) as a major core GDGT, thereby supporting the hypothesis that crenarchaeol is a biomarker lipid for AOA. The IPL headgroups synthesized by sedimentary AOA comprised mainly monohexose, dihexose, phosphohexose, and hexose-phosphohexose moieties. The hexose-phosphohexose headgroup bound to crenarchaeol was common to all enrichments and, in fact, the only IPL common to every AOA enrichment analyzed to date. This apparent specificity, in combination with its inferred lability, suggests that it may be the most suitable biomarker lipid to trace living AOA. GDGTs bound to headgroups with a mass of 180 Da of unknown structure appear to be specific to the marine group I.1a AOA: they were synthesized by all three sedimentary AOA and "Candidatus Nitrosopumilus maritimus"; however, they were absent in the group I.1b AOA "Candidatus Nitrososphaera gargensis."  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号