首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1409篇
  免费   131篇
  2023年   9篇
  2022年   13篇
  2021年   53篇
  2020年   31篇
  2019年   36篇
  2018年   33篇
  2017年   35篇
  2016年   43篇
  2015年   78篇
  2014年   84篇
  2013年   79篇
  2012年   129篇
  2011年   92篇
  2010年   64篇
  2009年   55篇
  2008年   69篇
  2007年   70篇
  2006年   48篇
  2005年   50篇
  2004年   52篇
  2003年   50篇
  2002年   45篇
  2001年   18篇
  2000年   19篇
  1999年   16篇
  1998年   8篇
  1997年   11篇
  1996年   22篇
  1995年   18篇
  1994年   9篇
  1993年   16篇
  1992年   9篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   14篇
  1986年   9篇
  1985年   6篇
  1983年   8篇
  1979年   6篇
  1977年   5篇
  1973年   5篇
  1972年   7篇
  1969年   6篇
  1968年   4篇
  1929年   4篇
  1918年   4篇
  1912年   4篇
  1911年   10篇
  1910年   6篇
排序方式: 共有1540条查询结果,搜索用时 15 毫秒
121.
122.
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)‐379/410 genomic cluster as a key component of GC/GR‐driven metabolic dysfunction. Particularly, miR‐379 was up‐regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR‐dependent manner. Hepatocyte‐specific silencing of miR‐379 substantially reduced circulating very‐low‐density lipoprotein (VLDL)‐associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR‐379 effects on key receptors in hepatic TG re‐uptake. As hepatic miR‐379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR‐controlled miRNA cluster not only defines a novel layer of hormone‐dependent metabolic control but also paves the way to alternative miRNA‐based therapeutic approaches in metabolic dysfunction.  相似文献   
123.
124.
The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.  相似文献   
125.
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N′-[(5′-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N′-((5′-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.  相似文献   
126.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   
127.
(Eco)toxicity studies conducted according to internationally standardized test guidelines are often considered reliable by default and preferred as key evidence in regulatory risk assessment. At the same time regulatory agencies emphasize the use of all relevant (eco)toxicity data in the risk assessment process, including non-standard studies. However, there is a need to facilitate the use of such studies in regulatory risk assessment. Therefore, we propose a framework that facilitates a systematic and transparent evaluation of the reliability and relevance of (eco)toxicity in vivo studies for health and environmental risk assessment. The framework includes specific criteria to guide study evaluation, as well as a color-coding tool developed to aid the application of these criteria. In addition we provide guidance intended for researchers on how to report non-standard studies to ensure that they meet regulatory requirements. The intention of the evaluating and reporting criteria is to increase the usability of all relevant data that may fill information gaps in chemical risk assessments. The framework is publically available online, free of charge, at the Science in Risk Assessment and Policy (SciRAP) website: www.scirap.org. The aim of this article is to present the framework and resources available at the SciRAP website.  相似文献   
128.
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats.  相似文献   
129.
Pericytes, the mural cells of blood microvessels, have recently come into focus as regulators of vascular morphogenesis and function during development, cardiovascular homeostasis, and disease. Pericytes are implicated in the development of diabetic retinopathy and tissue fibrosis, and they are potential stromal targets for cancer therapy. Some pericytes are probably mesenchymal stem or progenitor cells, which give rise to adipocytes, cartilage, bone, and muscle. However, there is still confusion about the identity, ontogeny, and progeny of pericytes. Here, we review the history of these investigations, indicate emerging concepts, and point out problems and promise in the field of pericyte biology.  相似文献   
130.
The underlying biochemical consequences of inflammatory bowel disease (IBD) on the systemic and gastrointestinal metabolism have not yet been fully elucidated but could help to better understand the disease pathogenesis and to identify tissue-specific markers associated with the different disease stages. Here, we applied a metabonomic approach to monitor metabolic events associated with the gradual development of Crohn's disease (CD)-like ileitis in the TNF(ΔARE/WT) mouse model. Metabolic profiles of different intestinal compartments from the age of 4 up to 24 weeks were generated by combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). From 8 weeks onward, mice developed CD similar to the immune and tissue-related phenotype of human CD with ileal involvement, including ileal histological abnormalities, reduced fat mass and body weight, as well as hallmarks of malabsorption with higher energy wasting. The metabonomic approach highlighted shifts in the intestinal lipid metabolism concomitant to the histological onset of inflammation. Moreover, the advanced disease status was characterized by a significantly altered metabolism of cholesterol, triglycerides, phospholipids, plasmalogens, and sphingomyelins in the inflamed tissue (ileum) and the adjacent intestinal parts (proximal colon). These results describe different biological processes associated with the disease onset, including modifications of the general cell membrane composition, alteration of energy homeostasis, and finally the generation of inflammatory lipid mediators. Taken together, this provides novel insights into IBD-related alterations of specific lipid-dependant processes during inflammatory states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号