首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1980篇
  免费   155篇
  2135篇
  2023年   8篇
  2022年   13篇
  2021年   34篇
  2020年   17篇
  2019年   23篇
  2018年   40篇
  2017年   27篇
  2016年   63篇
  2015年   83篇
  2014年   99篇
  2013年   114篇
  2012年   155篇
  2011年   129篇
  2010年   86篇
  2009年   82篇
  2008年   120篇
  2007年   121篇
  2006年   127篇
  2005年   98篇
  2004年   99篇
  2003年   110篇
  2002年   88篇
  2001年   11篇
  2000年   17篇
  1999年   30篇
  1998年   26篇
  1997年   25篇
  1996年   20篇
  1995年   14篇
  1994年   17篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   13篇
  1987年   13篇
  1986年   11篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   14篇
  1981年   14篇
  1980年   15篇
  1978年   6篇
  1977年   6篇
  1976年   8篇
  1975年   10篇
  1974年   6篇
  1973年   6篇
排序方式: 共有2135条查询结果,搜索用时 15 毫秒
81.

Rationale

Neuromuscular electrical stimulation (NMES) of the lower limbs is an emerging training strategy in patients with COPD. The efficacy of this technique is related to the intensity of the stimulation that is applied during the training sessions. However, little is known about tolerance to stimulation current intensity and physiological factors that could determine it. Our goal was to find potential physiological predictors of the tolerance to increasing NMES stimulation intensity in patients with mild to severe COPD.

Methods

20 patients with COPD (FEV1 = 54±14% pred.) completed 2 supervised NMES sessions followed by 5 self-directed sessions at home and one final supervised session. NMES was applied simultaneously to both quadriceps for 45 minutes, at a stimulation frequency of 50 Hz. Spirometry, body composition, muscle function and aerobic capacity were assessed at baseline. Cardiorespiratory responses, leg discomfort, muscle fatigue and markers of systemic inflammation were assessed during or after the last NMES session. Tolerance to NMES was quantified as the increase in current intensity from the initial to the final NMES session (ΔInt).

Results

Mean ΔInt was 12±10 mA. FEV1, fat-free-mass, quadriceps strength, aerobic capacity and leg discomfort during the last NMES session positively correlated with ΔInt (r = 0.42 to 0.64, all p≤0.06) while post/pre NMES IL-6 ratio negatively correlated with ΔInt (r = −0.57, p = 0.001). FEV1, leg discomfort during last NMES session and post/pre IL-6 ratio to NMES were independent factors of variance in ΔInt (r2 = 0.72, p = 0.001).

Conclusion

Lower tolerance to NMES was associated with increasing airflow obstruction, low tolerance to leg discomfort during NMES and the magnitude of the IL-6 response after NMES.

Trial Registration

ClinicalTrials.gov NCT00809120  相似文献   
82.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   
83.
Insulin and insulin-like growth factor 1 (IGF-1) receptor signaling pathways differentially modulate cardiac growth under resting conditions and following exercise training. These effects are mediated by insulin receptor substrate 1 (IRS1) and IRS2, which also differentially regulate resting cardiac mass. To determine the role of IRS isoforms in mediating the hypertrophic and metabolic adaptations of the heart to exercise training, we subjected mice with cardiomyocyte-specific deletion of either IRS1 (CIRS1 knockout [CIRS1KO] mice) or IRS2 (CIRS2KO mice) to swim training. CIRS1KO hearts were reduced in size under basal conditions, whereas CIRS2KO hearts exhibited hypertrophy. Following exercise swim training in CIRS1KO and CIRS2KO hearts, the hypertrophic response was equivalently attenuated, phosphoinositol 3-kinase (PI3K) activation was blunted, and prohypertrophic signaling intermediates, such as Akt and glycogen synthase kinase 3β (GSK3β), were dephosphorylated potentially on the basis of reduced Janus kinase-mediated inhibition of protein phosphatase 2a (PP2A). Exercise training increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein content, mitochondrial capacity, fatty acid oxidation, and glycogen synthesis in wild-type (WT) controls but not in IRS1- and IRS2-deficient hearts. PGC-1α protein content remained unchanged in CIRS1KO but decreased in CIRS2KO hearts. These results indicate that although IRS isoforms play divergent roles in the developmental regulation of cardiac size, these isoforms exhibit nonredundant roles in mediating the hypertrophic and metabolic response of the heart to exercise.  相似文献   
84.
This study reports on the C-terminal fragment of the 11S proteasome activator complex (PA28 or Reg alpha), a novel ovarian-specific biomarker of early and late stages of ovarian cancer (OVC) relapse, in patient biopsies after chemotherapy. A total of 179 tissue samples were analyzed: 8 stage I, 55 stage III-IV, 10 relapsed serous carcinomas, 25 mucinous carcinomas and 12 borderline and 68 benign ovarian tissue samples. This fragment was detected by MALDI mass spectrometry profiling in conjunction with a novel extraction method using hexafluoroisopropanol (1,1,1,3,3,3-hexafluoro-2-propanol; HFIP) solvents for protein solubilization and by immunohistochemistry using a specific antibody directed against the C-terminal fragment of PA28. Due to its specific cellular localization, this fragment is a suitable candidate for early OVC diagnosis, patient prognosis and follow-up during therapy and discriminating borderline cancers. Statistical analyses performed for this marker at different OVC stages reflect a prevalence of 77.66 ± 8.77 % (with a correlation coefficient value p < 0.001 of 0.601 between OVC and benign tissue). This marker presents a prevalence of 88 % in the case of tumor relapse and is detected at 80.5 % in stage I and 81.25 % ± 1.06 in stage III-IV of OVC. The correlation value for the different OVC stages is p < 0.001 of 0.998. Taken together, this report constitutes the first evidence of a novel OVC-specific marker.  相似文献   
85.
Quantification of the abundance of Vibrio parahaemolyticus in water and oysters from Rhode Island showed the presence of environmental strains and low levels of potentially pathogenic strains when water temperatures were ≥18°C, with peak levels in late July to early August. A higher abundance of the trh gene than of the tdh gene was observed.  相似文献   
86.
The analysis of sequence conservation is commonly used to predict functionally important sites in proteins. We have developed an approach that first identifies highly conserved sites in a set of orthologous sequences using a weighted substitution‐matrix‐based conservation score and then filters these conserved sites based on the pattern of conservation present in a wider alignment of sequences from the same family and structural information to identify surface‐exposed sites. This allows us to detect specific functional sites in the target protein and exclude regions that are likely to be generally important for the structure or function of the wider protein family. We applied our method to two members of the serpin family of serine protease inhibitors. We first confirmed that our method successfully detected the known heparin binding site in antithrombin while excluding residues known to be generally important in the serpin family. We next applied our sequence analysis approach to neuroserpin and used our results to guide site‐directed polyalanine mutagenesis experiments. The majority of the mutant neuroserpin proteins were found to fold correctly and could still form inhibitory complexes with tissue plasminogen activator (tPA). Kinetic analysis of tPA inhibition, however, revealed altered inhibitory kinetics in several of the mutant proteins, with some mutants showing decreased association with tPA and others showing more rapid dissociation of the covalent complex. Altogether, these results confirm that our sequence analysis approach is a useful tool that can be used to guide mutagenesis experiments for the detection of specific functional sites in proteins. Proteins 2015; 83:135–152. © 2014 Wiley Periodicals, Inc.  相似文献   
87.
The increasing prevalence of chronic wounds has significant financial implications for nations with advanced healthcare provision. Although the diseases that predispose to hard‐to‐heal wounds are recognized, their etiology is less well understood, partly because practitioners in wound management lack specialized diagnostic support. Prognostic indicators for healing may be inherent to wound biochemistry but remain invisible under routine clinical investigation; lactate is an example of this. In this study, lactate concentration in exudate obtained from 20 patients undergoing wound management in hospital was variable but in some cases approached or exceeded 20 mM. In vitro viability studies indicated that fibroblasts and endothelial cells tolerated low levels of lactate (1–10 mM), but cell viability was severely compromised by high lactate concentrations (=20 mM). Scratched monolayer experiments revealed that cell migration was affected earlier than viability in response to increasing lactate dose, and this was shown by immunocytochemistry to be associated with cytoskeletal disruption. A prototype enzyme‐based colorimetric assay for lactate generating a color change that was rapid in the context of clinical practise, and capable of functioning within a gel vehicle, was developed with point‐of‐care dipstick applications in mind. A randomized single‐blinded trial involving 30 volunteers and using a color chart to calibrate the assay demonstrated that lactate concentration could be reliably estimated with 5 mM precision; this suggesting that “physiological” and “pathological” lactate concentration could be distinguished. The present data suggest that a dipstick‐type colorimetric assay could comprise a viable diagnostic tool for identifying patients at‐risk from high‐wound lactate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 917–924, 2012  相似文献   
88.
Norflurazon (Nf) and fluridone (Fd) are phytoene desaturase inhibitor herbicides that are widely used for the control of grasses and invasive aquatic weeds, respectively. These herbicides enter aquatic environments where they can negatively affect non-target plant species (e.g. algae). Their toxicity towards algae may be modified by abiotic factors such as light intensity, temperature, pH and nutrients. Investigating the effect of low temperature on the toxicity of Nf and Fd is particularly important because both temperature and herbicides affect some of the same physiological process (e.g. carotenoid biosynthesis). Here we demonstrate that Nf reduced photosynthesis in the green alga Chlamydomonas reinhardtii more strongly at 15 than at 25ºC, while Fd showed stronger effects at 25 than at 15ºC. Neither herbicide significantly inhibited photosynthesis at 8ºC. Although the overall pigment content decreased with lower temperature, there was an increase in photo-protective carotenoids relative to chlorophylls at both 15 and 8ºC in the absence of herbicides. Moreover, most of the measured pigments decreased markedly in the presence of Nf and Fd at 15 and 25ºC, including β-carotene which fell to below detection limits. The fatty acid composition was modified by temperature and the level of unsaturation noticeably increased at 15 compared with 25ºC. At 8ºC, however, despite a 2.4 times decrease in fatty acid content, the unsaturation level was similar to 25ºC acclimated cells. Monounsaturated fatty acids increased concomitant with a decrease in polyunsaturated fatty acid in the 2.5 µM Nf treatment at 25ºC. Differences in the effect of Nf and Fd on photosynthesis at 15 and 25ºC can be attributed to the marked decrease in carotenoids, which play an important role in photoprotection. At 8ºC, the apparent lack of inhibitory effects compared with control cultures could be due to enhanced photoprotection and/or decreased uptake of herbicides by the alga.  相似文献   
89.

Introduction

The microenvironment surrounding inflamed synovium leads to the activation of fibroblast-like synoviocytes (FLSs), which are important contributors to cartilage destruction in rheumatoid arthritic (RA) joints. Transglutaminase 2 (TG2), an enzyme involved in extracellular matrix (ECM) cross-linking and remodeling, is activated by inflammatory signals. This study was undertaken to assess the potential contribution of TG2 to FLS-induced cartilage degradation.

Methods

Transglutaminase (TGase) activity and collagen degradation were assessed with the immunohistochemistry of control, collagen-induced arthritic (CIA) or TG2 knockdown (shRNA)-treated joint tissues. TGase activity in control (C-FLS) and arthritic (A-FLS) rat FLSs was measured by in situ 5-(biotinamido)-pentylamine incorporation. Invadopodia formation and functions were measured in rat FLSs and cells from normal (control; C-FLS) and RA patients (RA-FLS) by in situ ECM degradation. Immunoblotting, enzyme-linked immunosorbent assay (ELISA), and p3TP-Lux reporter assays were used to assess transforming growth factor-β (TGF-β) production and activation.

Results

TG2 and TGase activity were associated with cartilage degradation in CIA joints. In contrast, TGase activity and cartilage degradation were reduced in joints by TG2 knockdown. A-FLSs displayed higher TGase activity and TG2 expression in ECM than did C-FLSs. TG2 knockdown or TGase inhibition resulted in reduced invadopodia formation in rat and human arthritic FLSs. In contrast, increased invadopodia formation was noted in response to TGase activity induced by TGF-β, dithiothreitol (DTT), or TG2 overexpression. TG2-induced increases in invadopodia formation were blocked by TGF-β neutralization or inhibition of TGF-βR1.

Conclusions

TG2, through its TGase activity, is required for ECM degradation in arthritic FLS and CIA joints. Our findings provide a potential target to prevent cartilage degradation in RA.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号