首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1955篇
  免费   150篇
  2023年   7篇
  2022年   12篇
  2021年   34篇
  2020年   17篇
  2019年   23篇
  2018年   40篇
  2017年   27篇
  2016年   63篇
  2015年   82篇
  2014年   99篇
  2013年   114篇
  2012年   154篇
  2011年   128篇
  2010年   85篇
  2009年   81篇
  2008年   119篇
  2007年   118篇
  2006年   126篇
  2005年   98篇
  2004年   98篇
  2003年   109篇
  2002年   88篇
  2001年   10篇
  2000年   16篇
  1999年   28篇
  1998年   25篇
  1997年   25篇
  1996年   20篇
  1995年   13篇
  1994年   17篇
  1993年   10篇
  1992年   9篇
  1991年   10篇
  1990年   11篇
  1988年   12篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   12篇
  1983年   12篇
  1982年   14篇
  1981年   14篇
  1980年   15篇
  1979年   5篇
  1978年   6篇
  1977年   6篇
  1976年   8篇
  1975年   10篇
  1974年   6篇
  1973年   6篇
排序方式: 共有2105条查询结果,搜索用时 15 毫秒
141.
142.
Diatomic ligand discrimination by soluble guanylyl cyclase (sGC) is paramount to cardiovascular homeostasis and neuronal signaling. Nitric oxide (NO) stimulates sGC activity 200-fold compared with only four-fold by carbon monoxide (CO). The molecular details of ligand discrimination and differential response to NO and CO are not well understood. These ligands are sensed by the heme domain of sGC, which belongs to the heme nitric oxide oxygen (H-NOX) domain family, also evolutionarily conserved in prokaryotes. Here we report crystal structures of the free, NO-bound, and CO-bound H-NOX domains of a cyanobacterial homolog. These structures and complementary mutational analysis in sGC reveal a molecular ruler mechanism that allows sGC to favor NO over CO while excluding oxygen, concomitant to signaling that exploits differential heme pivoting and heme bending. The heme thereby serves as a flexing wedge, allowing the N-terminal subdomain of H-NOX to shift concurrent with the transition of the six- to five-coordinated NO-bound state upon sGC activation. This transition can be modulated by mutations at sGC residues 74 and 145 and corresponding residues in the cyanobacterial H-NOX homolog.  相似文献   
143.
144.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   
145.
Degradation of the cspA mRNA in vivo is very rapid at temperatures greater than 30 degrees C and is moderately dependent on RNase E. Investigations in vitro show that degradosomes prepared from normal or cold-shocked cultures cleave the cspA mRNA preferentially at a single site in vitro between two stem-loops approximately 24 residues 3' to the termination codon and approximately 31 residues from the 3' end. The site of cleavage is independent of the temperature and largely independent of the phosphorylation status of the 5' end of cspA mRNA. A 5' stem-loop, potential occlusion of the initiation and termination codons, temperature-dependent translational efficiency, and the position of the RNase E cleavage site can explain the differential stability of the cspA mRNA.  相似文献   
146.
147.
Dual electrochemical determination of glucose and insulin has been developed, based on enzymatic reaction and immunoassay with utilization of ferrocene microcapsules, respectively. Glucose was determined through electrochemical oxidation of formed product, hydrogen peroxide, by the action of glucose oxidase (GOx). The layer-by-layer (LbL) films on the ferrocene microcrystal followed by anti-insulin antibody sensitization were employed for the biolabled ferrocene microcapsules production. The antibody sensitized ferrocene microcapsules worked as a probe in the proposed system. The microcapsules provided a higher signal generating molecule to antibody (S/P) ratio of 4.52x10(6) to 12.4x10(6). Microcapsules with different antibody loads (388-1070 antibody molecules per capsule) were subjected to a solid-phase immunoassay for the detection of insulin. The microcapsule having 1030 anti-insulin antibody molecules per capsule demonstrated good performance for insulin determination. The calibration curve for insulin had a linear range of 10(-10) to 10(-7) g mL(-1) with R(2)=0.990, 3.9% R.S.D. The limit of detection for insulin was 10 pg mL(-1) of 100 microL sample (equivalent to 10(-12)g of insulin). The determination range for the glucose was 0.5 and 40 mM with R(2)=0.996 and 4.1% R.S.D.  相似文献   
148.
The concept of a Barcode of Life Database (BoLD) for the Class Cephalopoda (Phylum Mollusca) was introduced at the Cephalopod International Advisory Council (CIAC) symposium in Hobart, Australia, February 2006. This suggestion was met with significant interest, concern and debate. This review attempts to describe the concept of the BoLD initiative and to outline considerations and concerns specific to a cephalopod BoLD. Jan M. Strugnell and Annie R. Lindgren contributed equally to this work.  相似文献   
149.
Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation   总被引:1,自引:0,他引:1  
An important issue for chromatin remodeling complexes is how their bromodomains recognize particular acetylated lysine residues in histones. The Rsc4 subunit of the yeast remodeler RSC contains an essential tandem bromodomain (TBD) that binds acetylated K14 of histone H3 (H3K14ac). We report a series of crystal structures that reveal a compact TBD that binds H3K14ac in the second bromodomain and, remarkably, binds acetylated K25 of Rsc4 itself in the first bromodomain. Endogenous Rsc4 is acetylated only at K25, and Gcn5 is identified as necessary and sufficient for Rsc4 K25 acetylation in vivo and in vitro. Rsc4 K25 acetylation inhibits binding to H3K14ac, and mutation of Rsc4 K25 results in altered growth rates. These data suggest an autoregulatory mechanism in which Gcn5 performs both the activating (H3K14ac) and inhibitory (Rsc4 K25ac) modifications, perhaps to provide temporal regulation. Additional regulatory mechanisms are indicated as H3S10 phosphorylation inhibits Rsc4 binding to H3K14ac peptides.  相似文献   
150.
Pulmonary fibrosis is a common response to a variety of lung injuries, characterized by fibroblast/myofibroblast expansion and abnormal accumulation of extracellular matrix. An increased expression of matrix metalloprotease 9 (MMP9) in human and experimental lung fibrosis has been documented, but its role in the fibrotic response is unclear. We studied the effect of MMP9 overexpression in bleomycin-driven lung fibrosis using transgenic mice expressing human MMP9 in alveolar macrophages (hMMP9-TG). At 8 weeks post-bleomycin, the extent of fibrotic lesions and OH-proline content were significantly decreased in the TG mice compared to the WT mice. The decreased fibrosis in hMMP9-TG mice was preceded by a significant reduction of neutrophils and lymphocytes in bronchoalveolar lavage (BAL) at 1 and 4 weeks post-bleomycin, respectively, as well as by significantly less TIMP-1 than the WT mice. From a variety of cytokines/chemokines investigated, we found that BAL levels of insulin-like growth factor binding protein-3 (IGFBP3) as well as the immunoreactive protein in the lungs were significantly lower in hMMP9-TG mice compared with WT mice despite similar levels of gene expression. Using IGFBP-3 substrate zymography we found that BAL from TG mice at 1 week after bleomycin cleaved IGFBP-3. Further, we demonstrated that MMP9 degraded IGFBP-3 into lower molecular mass fragments. These findings suggest that increased activity of MMP9 secreted by alveolar macrophages in the lung microenvironment may have an antifibrotic effect and provide a potential mechanism involving IGFBP3 degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号