首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   11篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   15篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   11篇
  2007年   12篇
  2006年   12篇
  2005年   9篇
  2004年   3篇
  2003年   3篇
  2002年   7篇
  2001年   5篇
  2000年   13篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
  1959年   1篇
  1926年   1篇
排序方式: 共有194条查询结果,搜索用时 31 毫秒
11.
12.
Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1) show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during cell entry or to cytoplasmic membranes for envelopment during assembly.  相似文献   
13.
Appropriately simulating the three-dimensional (3D) environment in which tissues normally develop and function is crucial for engineering in vitro models that can be used for the meaningful dissection of host-pathogen interactions. This Review highlights how the rotating wall vessel bioreactor has been used to establish 3D hierarchical models that range in complexity from a single cell type to multicellular co-culture models that recapitulate the 3D architecture of tissues observed in vivo. The application of these models to the study of infectious diseases is discussed.  相似文献   
14.
15.
Notch1 is essential for postnatal hair follicle development and homeostasis   总被引:4,自引:0,他引:4  
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis.  相似文献   
16.
The mammalian intestine has one of the highest turnover rates in the body. The intestinal epithelium is completely renewed in less than a week. It is divided into spatially distinct compartments in the form of finger-like projections and invaginations that are dedicated to specific functions. Intestinal cells are constantly produced from a stem cell reservoir that gives rise to proliferating transient amplifying cells, which subsequently differentiate and migrate to the correct compartment before dying after having fulfilled their physiological function. In recent years, a substantial body of evidence has accumulated to support the concept that signaling pathways known to be crucial for embryonic development of multiple organisms play a critical role in tightly regulating and controlling the self-renewing process of the intestine. Moreover, the same pathways appear to be deregulated in several hereditary and sporadic colorectal cancer syndromes due to activating and/or inactivating mutations of key components of such pathways. In this review we discuss recent findings demonstrating that differentiation and homeostasis of the intestine are controlled by developmental pathways such as Wnt, Notch, TGF-beta and Hedgehog, and illustrate how their deregulation contributes to intestinal neoplasia.  相似文献   
17.
18.
Regulation of the coagulation factor VIII (fVIII) level in circulation involves a hepatic receptor low-density lipoprotein receptor-related protein (LRP). One of two major LRP binding sites in fVIII is located within the A2 domain (A2), likely exposed within the fVIII complex with von Willebrand factor and contributing to regulation of fVIII via LRP. This work aimed to identify A2 residues forming its LRP-binding site, previously shown to involve residues 484-509. Isolated A2 was subjected to alanine-scanning mutagenesis followed by expression of a set of mutants in a baculovirus system. In competition and surface plasmon resonance assays, affinities of A2 mutants K466A, R471A, R484A, S488A, R489A, R490A, H497A, and K499A for LRP were found to be decreased by 2-4-fold. This correlated with 1.3-1.5-fold decreases in the degree of LRP-mediated internalization of the mutants in cell culture. Combining these mutations into pairs led to cumulative effects, i.e., 7-13-fold decrease in affinity for LRP and 1.6-2.2-fold decrease in the degree of LRP-mediated internalization in cell culture. We conclude that the residues mentioned above play a key role in formation of the A2 binding epitope for LRP. Experiments in mice revealed an approximately 4.5 times shorter half-life for A2 in the circulation in comparison with that of fVIII. The half-lives of A2 mutant R471A/R484A or A2 co-injected with receptor-associated protein, a classical ligand of LRP, were prolonged by approximately 1.9 and approximately 3.5 times, respectively, compared to that of A2. This further confirms the importance of the mutated residues for interaction of A2 with LRP and suggests the existence of an LRP-dependent mechanism for removing A2 as a product of dissociation of activated fVIII from the circulation.  相似文献   
19.
Uterine receptivity implies a dialogue between the hormonally primed maternal endometrium and the free-floating blastocyst. Endometrial stromal cells proliferate, avert apoptosis, and undergo decidualization in preparation for implantation; however, the molecular mechanisms that underlie differentiation into the decidual phenotype remain largely undefined. The Notch family of transmembrane receptors transduce extracellular signals responsible for cell survival, cell-to-cell communication, and differentiation, all fundamental processes for decidualization and pregnancy. Using a murine artificial decidualization model, pharmacological inhibition of Notch signaling by γ-secretase inhibition resulted in a significantly decreased deciduoma. Furthermore, a progesterone receptor (PR)-Cre Notch1 bigenic (Notch1(d/d)) confirmed a Notch1-dependent hypomorphic decidual phenotype. Microarray and pathway analysis, following Notch1 ablation, demonstrated significantly altered signaling repertoire. Concomitantly, hierarchical clustering demonstrated Notch1-dependent differences in gene expression. Uteri deprived of Notch1 signaling demonstrated decreased cellular proliferation; namely, reduced proliferation-specific antigen, Ki67, altered p21, cdk6, and cyclinD activity and an increased apoptotic-profile, cleaved caspase-3, Bad, and attenuated Bcl2. The results demonstrate that the preimplantation uterus relies on Notch signaling to inhibit apoptosis of stromal fibroblasts and regulate cell cycle progression, which together promotes successful decidualization. In summary, Notch1 signaling modulates multiple signaling mechanisms crucial for decidualization and these studies provide additional perspectives to the coordination of multiple signaling modalities required during decidualization.  相似文献   
20.
Liu ZJ  Li Y  Tan Y  Xiao M  Zhang J  Radtke F  Velazquez OC 《PloS one》2012,7(6):e38811
Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM). They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox)) embryonic fibroblasts (MEFs). Notch1-deficient (Notch1(-/-)) MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox) MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1) in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441), which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1). Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4) in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号