首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   243篇
  3144篇
  2023年   9篇
  2022年   33篇
  2021年   46篇
  2020年   31篇
  2019年   44篇
  2018年   52篇
  2017年   36篇
  2016年   67篇
  2015年   140篇
  2014年   169篇
  2013年   171篇
  2012年   243篇
  2011年   229篇
  2010年   114篇
  2009年   117篇
  2008年   177篇
  2007年   178篇
  2006年   156篇
  2005年   158篇
  2004年   171篇
  2003年   157篇
  2002年   144篇
  2001年   39篇
  2000年   23篇
  1999年   35篇
  1998年   48篇
  1997年   39篇
  1996年   25篇
  1995年   27篇
  1994年   22篇
  1993年   28篇
  1992年   19篇
  1991年   15篇
  1990年   22篇
  1989年   17篇
  1988年   13篇
  1987年   14篇
  1986年   8篇
  1985年   15篇
  1984年   9篇
  1983年   13篇
  1982年   12篇
  1981年   6篇
  1980年   12篇
  1979年   4篇
  1978年   7篇
  1974年   5篇
  1972年   3篇
  1971年   3篇
  1969年   3篇
排序方式: 共有3144条查询结果,搜索用时 0 毫秒
121.
Women with multiple sclerosis have significantly diminished disease activity during pregnancy. The purpose of our study was to identify the underlying mechanism for the diminished disease activity. We found that during the period of late pregnancy there is protection against paralysis, during both the induction and effector phases of relapsing experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. We did not find any changes in the cytokine secretion profiles or the proliferative activity of autoreactive T cells from mice induced during late pregnancy compared with virgin controls. In mice mated after disease onset, the inflammatory histologic lesions did not clear, despite marked clinical improvement during pregnancy. We found evidence for a serum factor present in late pregnancy that suppresses T cell activation. In the presence of sera taken from mice late in pregnancy, the proliferative response and IL-2 production of proteolipid protein p139-151-specific T cells were significantly diminished as compared with stimulation in the presence of normal mouse sera. In conclusion, serum from late pregnancy has the capacity to down-regulate T cell responses and might be associated with the amelioration of disease activity in experimental autoimmune encephalomyelitis.  相似文献   
122.
We here report the influence of the cell cycle abrogator UCN-01 on RKO human colon carcinoma cells differing in p53 status following exposure to two DNA damaging agents, the topoisomerase inhibitors etoposide and camptothecin. Cells were treated with the two drugs at the IC90 concentration for 24 h followed by post-incubation in drug-free medium. RKO cells expressing wild-type, functional p53 arrested the cell cycle progression in both the G1 and G2 phases of the cell cycle whereas the RKO/E6 cells, which lack functional p53, only arrested in the G2 phase. Growth-arrested cells did not resume proliferation even after prolonged incubation in drug-free medium (up to 96 h). To evaluate the importance of the cell cycle arrest on cellular survival, a non-toxic dose of UCN-01 (100 nM) was added to the growth-arrested cells. The addition of UCN-01 was accompanied by mitotic entry as revealed by the appearance of condensed chromatin and the MPM-2 phosphoepitope, which is characteristic for mitotic cells. G2 exit and mitotic transit was accompanied by a rapid activation of caspase-3 and apoptotic cell death. The influence of UCN-01 on the long-term cytotoxic effects of the two drugs was also determined. Unexpectedly, abrogation of the G2 arrest had no influence on the overall cytotoxicity of either drug. In contrast, addition of UCN-01 to cisplatin-treated RKO and RKO/E6 cells greatly increased the cytotoxic effects of the alkylating agent. These results strongly suggest that even prolonged cell cycle arrest in the G2 phase of the cell cycle is not necessarily coupled to efficient DNA repair and enhanced cellular survival as generally believed.  相似文献   
123.

Introduction

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

Methods

1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

Results

We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.

Conclusions

These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.  相似文献   
124.
125.
Continued exploration of the SAR around the lead imidazopyridine histamine H(3) antagonist 1 has led to the discovery of several related series of heterocyclic histamine H(3) antagonists. The synthesis and SAR of indolizine, indole and pyrazolopyridine based compounds are now described.  相似文献   
126.
Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300 μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300 μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.  相似文献   
127.
An empirically established chemoimmunotherapy for metastatic melanoma combines the systemic administration of the chemotherapeutic agent dacarbazine (DTIC) with the epifocal application of the contact sensitizer 2,4-dinitrochlorobenzene (DNCB) on cutaneous metastases. Although this therapy yields high response rates resulting in prolonged survival, the mechanisms involved remain unknown. Here, we investigated whether treatment of tumor-bearing mice with DTIC and DNCB resulted in a specific immune response against the tumor. Subcutaneous (s.c.) tumors and lung metastases were induced in C57BL/6 mice by injecting syngeneic B16-melanoma cells s.c. or into the lateral tail vein, respectively. Mice were treated with intraperitoneal injections of DTIC followed by epifocal application of DNCB. This therapeutic approach significantly reduced the growth of s.c. tumors as well as lung metastases. Our data showed that the effector mechanisms involved are dependent on T cells. No therapeutic effect was observed in immunodeficient RAG-1(-/-) mice, or when the contact sensitizer DNCB was replaced by skin irritants (croton oil or tributyltin). Splenic lymphocytes obtained from treated mice displayed a three-fold higher specific cytolytic activity against B16 cells than in tumor-bearing controls. Both CD8(+) and CD4(+) T cells were able to lyse B16 cells. No changes were observed in natural killer (NK) cell activity. Likewise, tumor-infiltrating lymphocytes (TIL) of treated mice showed higher cytolytic activity than that of controls. Analysis of cytokine expression in s.c. tumors revealed increased mRNA levels of interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6) in treated tumors. Together, these findings demonstrate the ability of DTIC/DNCB treatment to induce an effective T cell-dependent host immune response against a syngeneic tumor.  相似文献   
128.
Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such ‘regime shifts’ can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long‐term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi‐objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe.  相似文献   
129.
The closer muscle of large-clawed decapod crustaceans undergoes a proecdysial (premolt) atrophy to facilitate withdrawal of the appendage at ecdysis. This atrophy involves the activation of both calcium-dependent (calpains) and ubiquitin (Ub)/proteasome-dependent proteolytic systems that break down proteins to reduce muscle mass. Moreover, the large slow-twitch (S(1)) fibers undergo a greater atrophy than the small slow-tonic (S(2)) fibers. Both polyUb mRNA and Ub-protein conjugates increase during claw muscle atrophy. In this study in situ hybridization and RT-PCR were used to determine the temporal and spatial expression of polyUb and alpha-actin. A cDNA encoding the complete sequence of lobster muscle alpha-actin was characterized; a probe synthesized from the cDNA provided a positive control for optimizing RT-PCR and in situ hybridization. PolyUb was expressed at low levels in claw closer muscle from anecdysial (intermolt) land crab. By early proecdysis (premolt; stage D(0)), polyUb mRNA levels increased in medial fibers that insert along the midline of the apodeme, with greater expression in S(1) than S(2), while levels remained low in peripheral fibers. By late proecdysis, polyUb mRNA decreased in central fibers, while mRNA increased in peripheral S(1) fibers. In contrast, alpha-actin was expressed in lobster claw muscles at relatively constant levels during the intermolt cycle. These results suggest that Ub/proteasome-dependent proteolysis contributes to enhanced turnover of myofibrillar proteins during claw closer muscle atrophy. Furthermore, atrophy is not synchronous within the muscle; it begins in medial fibers and then progresses peripherally.  相似文献   
130.
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号