首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2894篇
  免费   247篇
  3141篇
  2023年   9篇
  2022年   32篇
  2021年   44篇
  2020年   31篇
  2019年   44篇
  2018年   55篇
  2017年   35篇
  2016年   67篇
  2015年   137篇
  2014年   168篇
  2013年   169篇
  2012年   241篇
  2011年   228篇
  2010年   113篇
  2009年   117篇
  2008年   176篇
  2007年   182篇
  2006年   156篇
  2005年   161篇
  2004年   173篇
  2003年   156篇
  2002年   146篇
  2001年   39篇
  2000年   24篇
  1999年   36篇
  1998年   43篇
  1997年   39篇
  1996年   24篇
  1995年   27篇
  1994年   21篇
  1993年   29篇
  1992年   21篇
  1991年   15篇
  1990年   21篇
  1989年   18篇
  1988年   13篇
  1987年   14篇
  1986年   9篇
  1985年   15篇
  1984年   9篇
  1983年   15篇
  1982年   12篇
  1981年   6篇
  1980年   12篇
  1979年   4篇
  1978年   7篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3141条查询结果,搜索用时 0 毫秒
101.
Resistance of influenza A viruses to neuraminidase inhibitors can arise through mutations in the neuraminidase (NA) gene. We show here that a Q136K mutation in the NA of the 2009 pandemic H1N1 virus confers a high degree of resistance to zanamivir. Resistance is accompanied by reduced numbers of NA molecules in viral particles and reduced intrinsic enzymatic activity of mutant NA. Interestingly, the Q136K mutation strongly impairs viral fitness in the guinea pig transmission model.  相似文献   
102.
103.
104.
Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.  相似文献   
105.
Sulfur Mustard (SM) is a vesicant chemical warfare agent, which is acutely toxic to a variety of organ systems including skin, eyes, respiratory system and bone marrow. The underlying molecular pathomechanism was mainly attributed to the alkylating properties of SM. However, recent studies have revealed that cellular responses to SM exposure are of more complex nature and include increased protein expression and protein modifications that can be used as biomarkers. In order to confirm already known biomarkers, to detect potential new ones and to further elucidate the pathomechanism of SM, we conducted large-scale proteomic experiments based on a human keratinocyte cell line (HaCaT) exposed to SM. Surprisingly, our analysis identified glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) as one of the up-regulated proteins after exposure of HaCaT cells to SM. In this paper we demonstrate the sulfur mustard induced nuclear translocation of GAPDH in HaCaT cells by 2D gel-electrophoresis (2D GE), immunocytochemistry (ICC), Western Blot (WB) and a combination thereof. 2D GE in combination with MALDI-TOF MS/MS analysis identified GAPDH as an up-regulated protein after SM exposure. Immunocytochemistry revealed a distinct nuclear translocation of GAPDH after exposure to 300 μM SM. This finding was confirmed by fractionated WB analysis. 2D GE and subsequent immunoblot staining of GAPDH demonstrated two different spot locations of GAPH (pI 7.0 and pI 8.5) that are related to cytosolic or nuclear GAPDH respectively. After exposure to 300 μM SM a significant increase of nuclear GAPDH at pI 8.5 occurred. Nuclear GAPDH has been associated with apoptosis, detection of structural DNA alterations, DNA repair and regulation of genomic integrity and telomere structure. The results of our study add new aspects to the pathophysiology of sulfur mustard toxicity, yet further studies will be necessary to reveal the specific function of nuclear GAPDH in the pathomechanism of sulfur mustard.  相似文献   
106.
A first approach to discover new antimalarials has been recently performed in a combined approach with data from GlaxoSmithKline Tres Cantos Antimalarial Set, Novartis-GNF Malaria Box Data set and St. Jude Children’s Research Hospital. These data are assembled in the Malaria Box. In a first phenotypic forward chemical genetic approach, 400 chemicals were employed to eradicate the parasite in the erythrocytic stages. The advantage of phenotypic screens for the identification of novel chemotypes is that no a priori assumptions are made concerning a fixed target and that active compounds inherently have cellular bioavailability. In a first screen 40 mostly heterocyclic, highly active compounds (in nmol range of growth inhibition) were identified with EC50 values ≤2 μM against chloroquine-resistant Plasmodium falciparum strains and a therapeutic window ≥10 against two mammalian cell lines. 78 % of the compounds had no violations with the Lipinski Rule of 5 and only 1 % of the compounds showed cytotoxicity when applied at concentrations of 10 μM. This pre-selective step of parasitic eradication will be used further for a test of the Malaria Box with a potential in iron chelating capacity to inhibit deoxyhypusine hydroxylase (DOHH) from P. falciparum and vivax. DOHH, a metalloprotein which consists of ferrous iron and catalyzes the second step of the posttranslational modification at a specific lysine in eukaryotic initiation factor 5A (EIF-5A) to hypusine. Hypusine is a novel, non-proteinogenic amino acid, which is essential in eukaryotes and for parasitic proliferation. DOHH seems to be a “druggable” target, since it has only 26 % amino acid identity to its human orthologue. For a High-throughput Screening (HTS) of DOOH inhibitors, rapid and robust analytical tools are a prerequisite. A proteomic platform for the detection of hypusine metabolites is currently established. Ultra performance Liquid Chromatography enables the detection of hypusine metabolites with retention times of 7.4 min for deoxyhypusine and 7.3 min for hypusine. Alternatively, the analytes can be detected by their masses with gas chromatography/mass spectrometry or one-dimensional chromatography coupled to mass spectrometry. Moreover, the identified hits will be tracked further to test their efficacy in novel “in vitro assays”. Subsequently in vivo inhibition in a humanized mouse model will be tested.  相似文献   
107.
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within‐colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.  相似文献   
108.
109.
110.
BackgroundResearch on sleep after stroke has focused mainly on sleep disordered breathing. However, the extend to which sleep physiology is altered in stroke survivors, how these alterations compare to healthy volunteers, and how sleep changes might affect recovery as well as physical and mental health has yet to be fully researched. Motivated by the view that a deeper understanding of sleep in stroke is needed to account for its role in health and well-being as well as its relevance for recovery and rehabilitation, we conducted a systematic review and meta-analysis of polysomnographic studies comparing stroke to control populations.MethodMedline and PsycInfo databases were searched using "stroke" and words capturing polysomnographic parameters as search terms. This yielded 1692 abstracts for screening, with 15 meeting the criteria for systematic review and 9 for meta-analysis. Prisma best practice guidelines were followed for the systematic review; the Comprehensive Meta-Analysis software was used for random effects modelling.ResultsThe meta-analysis revealed that patients with stroke have poorer sleep than controls. Patients had lower sleep efficiency (mean 75% vs 84%), shorter total-sleep-time (309.4 vs 340.3 min) and more wake-after-sleep-onset (97.2 vs 53.8 min). Patients also spend more time in stage 1 (13% vs 10%) and less time in stage 2 sleep (36% vs 45%) and slow-wave-sleep (10% vs 12%). No group differences were identified for REM sleep. The systematic review revealed a strong bias towards studies in the early recovery phase of stroke, with no study reporting specifically on patients in the chronic state. Moreover, participants in the control groups included community samples as well as other patients groups.ConclusionsThese results indicate poorer sleep in patients with stroke than controls. While strongly suggestive in nature, the evidence base is limited and methodologically diverse, and hands a clear mandate for further research. A particular need regards polysomnographic studies in chronic community-dwelling patients compared to age-matched individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号