首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2954篇
  免费   243篇
  2023年   10篇
  2022年   32篇
  2021年   44篇
  2020年   31篇
  2019年   45篇
  2018年   53篇
  2017年   37篇
  2016年   71篇
  2015年   136篇
  2014年   173篇
  2013年   173篇
  2012年   240篇
  2011年   230篇
  2010年   115篇
  2009年   117篇
  2008年   178篇
  2007年   179篇
  2006年   157篇
  2005年   158篇
  2004年   173篇
  2003年   157篇
  2002年   145篇
  2001年   38篇
  2000年   22篇
  1999年   35篇
  1998年   43篇
  1997年   40篇
  1996年   24篇
  1995年   27篇
  1994年   21篇
  1993年   28篇
  1992年   21篇
  1991年   20篇
  1990年   22篇
  1989年   17篇
  1988年   16篇
  1987年   16篇
  1986年   13篇
  1985年   15篇
  1984年   13篇
  1983年   14篇
  1982年   15篇
  1981年   10篇
  1980年   14篇
  1979年   5篇
  1978年   10篇
  1974年   6篇
  1973年   5篇
  1969年   4篇
  1967年   4篇
排序方式: 共有3197条查询结果,搜索用时 46 毫秒
991.
Transaminations betweenL-amino acids and pyruvate orα-ketoglutarate(α-KGA) were observed in a cell-free extract ofAcetobacter suboxydans(Gluconobacter suboxydans IFO 3172). The level of the activities of transaminations with pyruvate was greatly influenced by the kinds and amounts of nitrogen sources for growth media. The enzymic activities of transaminations with pyruvate in glutamate-grown cells were extremely higher than in yeast ex- tract-grown cells. Nutritional components decreasing the activities were presumed to be some of amino acids and ammonium ion present in yeast extract. The activities of transaminations withα-KGA were not so variable in the presence or absence of the components.

The optimum pH of transaminations with pyruvate was in the range of 5.0 ~ 5.5 and that of the reaction withα-KGA in 8.0 ~ 8.5. The optimum temperature of the former was 65°C and that of the latter about 45°C. Some other different properties were also recognized between the two kinds of reactions.  相似文献   
992.
Plantation forests,climate change and biodiversity   总被引:1,自引:0,他引:1  
Nearly 4 % of the world’s forests are plantations, established to provide a variety of ecosystem services, principally timber and other wood products. In addition to such services, plantation forests provide direct and indirect benefits to biodiversity via the provision of forest habitat for a wide range of species, and by reducing negative impacts on natural forests by offsetting the need to extract resources. There is compelling evidence that climate change is directly affecting biodiversity in forests throughout the world. These impacts occur as a result of changes in temperature, rainfall, storm frequency and magnitude, fire frequency, and the frequency and magnitude of pest and disease outbreaks. However, in plantation forests it is not only the direct effects of climate change that will impact on biodiversity. Climate change will have strong indirect effects on biodiversity in plantation forests via changes in forest management actions that have been proposed to mitigate the effects of climate change on the productive capacity of plantations. These include changes in species selection (including use of species mixtures), rotation length, thinning, pruning, extraction of bioenergy feedstocks, and large scale climate change driven afforestation, reforestation, and, potentially deforestation. By bringing together the potential direct and indirect impacts of climate change we conclude that in the short to medium term changes in plantation management designed to mitigate or adapt to climate change could have a significantly greater impact on biodiversity in such plantation forests than the direct effects of climate change. Although this hypothesis remains to be formally tested, forest managers worldwide are already considering new approaches to plantation forestry in an effort to create forests that are more resilient to the effects of changing climatic conditions. Such change presents significant risks to existing biodiversity values in plantation forests, however it also provides new opportunities to improve biodiversity values within existing and new plantation forests. We conclude by suggesting future options, such as functional zoning and species mixtures applied at either the stand level or as fine-scale mosaics of single-species stands as options to improve biodiversity whilst increasing resilience to climate change.  相似文献   
993.
Phenotypic plasticity can be an important adaptive response to climate change, particularly for dispersal-limited species. Temperature frequently alters de  相似文献   
994.
In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2–5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.  相似文献   
995.
Microbial conversion offers a promising strategy for overcoming the intrinsic heterogeneity of the plant biopolymer, lignin. Soil microbes that natively harbour aromatic-catabolic pathways are natural choices for chassis strains, and Pseudomonas putida KT2440 has emerged as a viable whole-cell biocatalyst for funnelling lignin-derived compounds to value-added products, including its native carbon storage product, medium-chain-length polyhydroxyalkanoates (mcl-PHA). In this work, a series of metabolic engineering targets to improve mcl-PHA production are combined in the P. putida chromosome and evaluated in strains growing in a model aromatic compound, p-coumaric acid, and in lignin streams. Specifically, the PHA depolymerase gene phaZ was knocked out, and the genes involved in β-oxidation (fadBA1 and fadBA2) were deleted. Additionally, to increase carbon flux into mcl-PHA biosynthesis, phaG, alkK, phaC1 and phaC2 were overexpressed. The best performing strain – which contains all the genetic modifications detailed above – demonstrated a 53% and 200% increase in mcl-PHA titre (g l−1) and a 20% and 100% increase in yield (g mcl-PHA per g cell dry weight) from p-coumaric acid and lignin, respectively, compared with the wild type strain. Overall, these results present a promising strain to be employed in further process development for enhancing mcl-PHA production from aromatic compounds and lignin.  相似文献   
996.
997.
This study aimed to characterize the intestinal yeasts in weaning piglets and to establish their possible relationships with main bacterial groups. German Landrace piglets were weaned (WP, n=32) at 28 days of age or kept with the dams until day 39 without creep feed (UP, n=32). The experiment was performed at an experimental and a commercial farm (CF). Faeces were collected from the piglets, sows and pen floors on days 28, 33 and 39 for isolation of DNA and cultivation for enumeration of yeasts, enterobacteria, enterococci and lactobacilli. Fragments of the D1 domain of 26S rRNA gene were amplified and separated by denaturing gradient gel electrophoresis (DGGE). No yeasts could be cultured from water and feed samples. No or only low numbers of yeasts were detected among all UP. In WP at CF, yeasts correlated with lactobacilli (r=0.456; P=0.009) and enterobacteria (r=-0.407; P=0.021). Kazachstania slooffiae dominated among the cultured yeasts. It was the only yeast species detected by PCR-DGGE. Yeasts, especially K. slooffiae, established in the porcine gastrointestinal tract after consumption of grain-based feed and may interrelate with the intestinal microbiota. The study provides data indicating importance of K. slooffiae for the development of balanced porcine gut microbiota.  相似文献   
998.
Considerable evidence implicates the renin-angiotensin system (RAS) in the regulation of energy balance. To evaluate the role of the RAS in the central nervous system regulation of energy balance, we used osmotic minipumps to chronically administer angiotensin II (Ang II; icv; 0.7 ng/min for 24 days) to adult male Long-Evans rats, resulting in reduced food intake, body weight gain, and adiposity. The decrease in body weight and adiposity occurred relative to both ad libitum- and pair-fed controls, implying that reduced food intake in and of itself does not underlie all of these effects. Consistent with this, rats administered Ang II had increased whole body heat production and oxygen consumption. Additionally, chronic icv Ang II increased uncoupling protein-1 and β(3)-adrenergic receptor expression in brown adipose tissue and β3-adrenergic receptor expression in white adipose tissue, which is suggestive of enhanced sympathetic activation and thermogenesis. Chronic icv Ang II also increased hypothalamic agouti-related peptide and decreased hypothalamic proopiomelanocortin expression, consistent with a state of energy deficit. Moreover, chronic icv Ang II increased the anorectic corticotrophin- and thyroid-releasing hormones within the hypothalamus. These results suggest that Ang II acts in the brain to promote negative energy balance and that contributing mechanisms include an alteration in the hypothalamic circuits regulating energy balance, a decrease in food intake, an increase in energy expenditure, and an increase in sympathetic activation of brown and white adipose tissue.  相似文献   
999.
Human GLRX5 (glutaredoxin 5) is an evolutionarily conserved thiol-disulfide oxidoreductase that has a direct role in the maintenance of normal cytosolic and mitochondrial iron homoeostasis, and its expression affects haem biosynthesis and erythropoiesis. We have crystallized the human GLRX5 bound to two [2Fe-2S] clusters and four GSH molecules. The crystal structure revealed a tetrameric organization with the [2Fe-2S] clusters buried in the interior and shielded from the solvent by the conserved β1-α2 loop, Phe?? and the GSH molecules. Each [2Fe-2S] cluster is ligated by the N-terminal activesite cysteine (Cys??) thiols contributed by two protomers and two cysteine thiols from two GSH. The two subunits co-ordinating the cluster are in a more extended conformation compared with iron-sulfur-bound human GLRX2, and the intersubunit interactions are more extensive and involve conserved residues among monothiol GLRXs. Gel-filtration chromatography and analytical ultracentrifugation support a tetrameric organization of holo-GLRX5, whereas the apoprotein is monomeric. MS analyses revealed glutathionylation of the cysteine residues in the absence of the [2Fe-2S] cluster, which would protect them from further oxidation and possibly facilitate cluster transfer/acceptance. Apo-GLRX5 reduced glutathione mixed disulfides with a rate 100 times lower than did GLRX2 and was active as a glutathione-dependent electron donor for mammalian ribonucleotide reductase.  相似文献   
1000.
Blebbistatin, a myosin II inhibitor, interferes with myosin-actin interaction and microtubule assembly. By influencing cytoskeletal dynamics blebbistatin counteracts apoptosis of several types of nucleated cells. Even though lacking nuclei and mitochondria, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include energy depletion and osmotic shock, which enhance cytosolic Ca(2+) activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. The present study explored the effect of blebbistatin on eryptosis. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in fluorescence-activated cell sorting analysis and cytosolic Ca(2+) concentration from Fluo3 fluorescence. Exposure to blebbistatin on its own (1-50 μM) did not significantly modify cytosolic Ca(2+) concentration, forward scatter, or annexin V binding. Glucose depletion (48 h) was followed by a significant increase of Fluo3 fluorescence and annexin V binding, effects significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 10 μM). Osmotic shock (addition of 550 mM sucrose) again significantly increased Fluo3 fluorescence and annexin binding, effects again significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 25 μM). The present observations disclose a novel effect of blebbistatin, i.e., an influence on Ca(2+) entry and suicidal erythrocyte death following energy depletion and osmotic shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号