首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2859篇
  免费   240篇
  2023年   9篇
  2022年   32篇
  2021年   43篇
  2020年   31篇
  2019年   44篇
  2018年   52篇
  2017年   34篇
  2016年   67篇
  2015年   135篇
  2014年   168篇
  2013年   168篇
  2012年   239篇
  2011年   225篇
  2010年   113篇
  2009年   116篇
  2008年   174篇
  2007年   178篇
  2006年   156篇
  2005年   157篇
  2004年   171篇
  2003年   156篇
  2002年   144篇
  2001年   38篇
  2000年   22篇
  1999年   35篇
  1998年   43篇
  1997年   39篇
  1996年   24篇
  1995年   27篇
  1994年   21篇
  1993年   28篇
  1992年   19篇
  1991年   15篇
  1990年   21篇
  1989年   16篇
  1988年   13篇
  1987年   14篇
  1986年   8篇
  1985年   15篇
  1984年   9篇
  1983年   13篇
  1982年   12篇
  1981年   6篇
  1980年   12篇
  1979年   4篇
  1978年   7篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有3099条查询结果,搜索用时 15 毫秒
121.
The endothelin system is composed of three endothelin isoforms (ET-1, ET-2, and ET-3), the endothelin receptors ETA and ETB, and the endothelin-converting enzyme (ECE). Besides having a major vasoactive role, endothelins have roles in different cell types at a local level. We investigated the presence of the different components of the endothelin system in primate ovaries. Human ovaries and gonadotropin-stimulated monkey ovaries were studied using immunohistochemistry for endothelin, and in situ hybridization with probes for ET-1, ET-2, ET-3, ETA and ETB receptors, and ECE. ET-1 and ETA receptors were detected in endothelial cells and vascular smooth muscle cells, respectively, in stromal vessels adjacent to follicles and corpora lutea. ETB receptors and ET-1 were found in the endothelial cells of capillaries of corpora lutea. ECE was present in internal theca cells of secondary, de Graaf, atretic follicles, and in luteinized granulosa cells of the corpora lutea. The endothelin system components are present in or around the follicles of human and monkey ovaries. Although the components are not expressed in the same cell types, they are synthesized, mainly in follicles, by cells that are in close proximity. Thus, the endothelin system could act in a paracrine manner. ECE expression in steroid-producing cells changes its compartmentalization during follicle maturation.  相似文献   
122.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   
123.
We previously demonstrated that distinct facilitative glucose transporter isoforms display differential sorting in polarized epithelial cells. In Madin-Darby canine kidney (MDCK) cells, glucose transporter 1 and 2 (GLUT1 and GLUT2) are localized to the basolateral cell surface whereas GLUTs 3 and 5 are targeted to the apical membrane. To explore the molecular mechanisms underlying this asymmetric distribution, we analyzed the targeting of chimeric glucose transporter proteins in MDCK cells. Replacement of the carboxy-terminal cytosolic tail of GLUT1, GLUT2, or GLUT4 with that from GLUT3 resulted in apical targeting. Conversely, a GLUT3 chimera containing the cytosolic carboxy terminus of GLUT2 was sorted to the basolateral membrane. These findings are not attributable to the presence of a basolateral signal in the tails of GLUTs 1, 2, and 4 because the basolateral targeting of GLUT1 was retained in a GLUT1 chimera containing the carboxy terminus of GLUT5. In addition, we were unable to demonstrate the presence of an autonomous basolateral sorting signal in the GLUT1 tail using the low-density lipoprotein receptor as a reporter. By examining the targeting of a series of more defined GLUT1/3 chimeras, we found evidence of an apical targeting signal involving residues 473-484 (DRSGKDGVMEMN) in the carboxy tail. We conclude that the targeting of GLUT3 to the apical cell surface in MDCK cells is regulated by a unique cytosolic sorting motif.  相似文献   
124.
125.
This communication identifies, for the first time, a receptor protein for signal perception from the P(II) signal transduction protein in the cyanobacterium Synechococcus elongatus. P(II), a phosphoprotein that signals the carbon/nitrogen status of the cells, forms a tight complex with the key enzyme of the arginine biosynthetic pathway, N-acetylglutamate (NAG) kinase. In complex with P(II), the catalytic activity of NAG kinase is strongly enhanced. Complex formation does not require the effector molecules of P(II), 2-oxoglutarate and ATP, but it is highly susceptible to modifications at the phosphorylation site of P(II), Ser-49. Stable complexes were only formed with the non-phosphorylated form of P(II) but not with Ser-49 mutants. In accordance with these data, NAG kinase activity in S. elongatus extracts correlated with the phosphorylation state of P(II), with high NAG kinase activities corresponding to non-phosphorylated P(II) (nitrogen-excess conditions) and low activities to increased levels of P(II) phosphorylation (nitrogen-poor conditions), thus subjecting the key enzyme of arginine biosynthesis to global nitrogen control.  相似文献   
126.
The symbiosis island of Mesorhizobium loti strain R7A contains genes with strong similarity to the structural vir genes (virB1-11; virD4) of Agrobacterium tumefaciens that encode the type IV secretion system (T4SS) required for T-DNA transfer to plants. In contrast, M. loti strain MAFF303099 lacks these genes but contains genes not present in strain R7A that encode a type III secretion system (T3SS). Here we show by hybridization analysis that most M. loti strains contain the VirB/D4 T4SS and not the T3SS. Strikingly, strain R7A vir gene mutants formed large nodules containing bacteroids on Leucaena leucocephala in contrast to the wild-type strain that formed only uninfected tumour-like structures. A rhcJ T3SS mutant of strain MAFF303099 also nodulated L. leucocephala, unlike the wild type. On Lotus corniculatus, the vir mutants were delayed in nodulation and were less competitive compared with the wild type. Two strain R7A genes, msi059 and msi061, were identified through their mutant phenotypes as possibly encoding translocated effector proteins. Both Msi059 and Msi061 were translocated through the A. tumefaciens VirB/D4 system into Saccharomyces cerevisiae and Arabidopsis thaliana, as shown using the Cre recombinase Reporter Assay for Translocation (CRAfT). Taken together, these results suggest that the VirB/D4 T4SS of M. loti R7A plays an analogous symbiotic role to that of T3SS found in other rhizobia. The heterologous translocation of rhizobial proteins by the Agrobacterium VirB/D4 T4SS is the first demonstration that rhizobial effector proteins are translocated into plant cells and confirms functional conservation between the M. loti and A. tumefaciens T4SS.  相似文献   
127.
128.
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave, Wyoming, were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of white filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes had organic carbon isotope values (mean delta13C=-34.7 per thousand, 1sigma=3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta13C=-7.4 per thousand for two springs, n=8). Bacterial diversity was low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the "Epsilonproteobacteria" (68%), with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted from the spring orifices downstream, corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the "Epsilonproteobacteria" maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystems through chemolithoautotrophy and expand the evolutionary and ecological views of "Epsilonproteobacteria" in terrestrial habitats.  相似文献   
129.
Rhodococcus sp. I24 can oxygenate indene via at least three independent enzyme activities: (i) a naphthalene inducible monooxygenase (ii) a naphthalene inducible dioxygenase, and (iii) a toluene inducible dioxygenase (TID). Pulsed field gel analysis revealed that the I24 strain harbors two megaplasmids of 340 and 50 kb. Rhodococcus sp. KY1, a derivative of the I24 strain, lacks the 340 kb element as well as the TID activity. Southern blotting and sequence analysis of an indigogenic, I24-derived cosmid suggested that an operon encoding a TID resides on the 340 kb element. Expression of the tid operon was induced by toluene but not by naphthalene. In contrast, naphthalene did induce expression of the nid operon, encoding the naphthalene dioxygenase in I24. Cell free protein extracts of Escherichia coli cells expressing tidABCD were used in HPLC-based enzyme assays to characterize the indene bioconversion of TID in vitro. In addition to 1-indenol, indene was transformed to cis-indandiol with an enantiomeric excess of 45.2% of cis-(1S,2R)-indandiol over cis-(1R,2S)-indandiol, as revealed by chiral HPLC analysis. The Km of TID for indene was 380 M. The enzyme also dioxygenated naphthalene to cis-dihydronaphthalenediol with an activity of 78% compared to the formation of cis-indandiol from indene. The Km of TID for naphthalene was 28 M. TID converted only trace amounts of toluene to 1,2-dihydro-3-methylcatechol after prolonged incubation time. The results indicate the role of the tid operon in the bioconversion of indene to 1-indenol and cis-(1S,2R)-indandiol by Rhodococcus sp. I24.  相似文献   
130.
Structure-activity relationship (SAR) studies of 2-[3-di(and tri)fluoromethyl-5-arylpyrazol-1-yl]-5-methanesulfonylpyridine derivatives for canine COX enzymes are described. This led to the identification of 12a as a lead candidate for further progression. The in vitro and in vivo activity of 12a for the canine COX-2 enzyme as well as its in vivo efficacy and pharmacokinetic properties in dog are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号