首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   33篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   9篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   15篇
  2014年   11篇
  2013年   14篇
  2012年   26篇
  2011年   35篇
  2010年   14篇
  2009年   22篇
  2008年   17篇
  2007年   14篇
  2006年   14篇
  2005年   27篇
  2004年   17篇
  2003年   15篇
  2002年   15篇
  2001年   6篇
  2000年   2篇
  1999年   6篇
  1998年   6篇
  1997年   4篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
  1969年   2篇
  1965年   1篇
  1939年   1篇
  1936年   1篇
  1922年   1篇
  1920年   1篇
  1917年   1篇
  1914年   1篇
  1908年   1篇
  1901年   1篇
排序方式: 共有340条查询结果,搜索用时 140 毫秒
11.
The human fecal anaerobe Eubacterium ramulus is capable of degrading various flavonoids, including the flavone naringenin. The first step in the proposed degradation pathway is the isomerization of naringenin to the corresponding chalcone. Cell-free extracts of E. ramulus displayed chalcone isomerase activity. The enzyme from E. ramulus was purified to homogeneity. Its apparent molecular mass was estimated to be 136 and 129 kDa according to gel filtration and native polyacrylamide gel electrophoresis, respectively. Chalcone isomerase is composed of one type of subunit of 30 kDa. The purified enzyme catalyzed the isomerization of naringenin chalcone, isoliquiritigenin, and butein, three chalcones that differ in their hydroxylation pattern. N-bromosuccinimide, but also naringenin and phloretin, inhibited the purified enzyme considerably. This is the first report on a bacterial chalcone isomerase. The physiological function of the purified enzyme is unclear, but an involvement in the conversion of the flavanone naringenin to the chalcone is proposed.  相似文献   
12.
13.
14.
A novel conus peptide ligand for K+ channels   总被引:1,自引:0,他引:1  
Voltage-gated ion channels determine the membrane excitability of cells. Although many Conus peptides that interact with voltage-gated Na(+) and Ca(2+) channels have been characterized, relatively few have been identified that interact with K(+) channels. We describe a novel Conus peptide that interacts with the Shaker K(+) channel, kappaM-conotoxin RIIIK from Conus radiatus. The peptide was chemically synthesized. Although kappaM-conotoxin RIIIK is structurally similar to the mu-conotoxins that are sodium channel blockers, it does not affect any of the sodium channels tested, but blocks Shaker K(+) channels. Studies using Shaker K(+) channel mutants with single residue substitutions reveal that the peptide interacts with the pore region of the channel. Introduction of a negative charge at residue 427 (K427D) greatly increases the affinity of the toxin, whereas the substitutions at two other residues, Phe(425) and Thr(449), drastically reduced toxin affinity. Based on the Shaker results, a teleost homolog of the Shaker K(+) channel, TSha1 was identified as a kappaM-conotoxin RIIIK target. Binding of kappaM-conotoxin RIIIK is state-dependent, with an IC(50) of 20 nm for the closed state and 60 nm at 0 mV for the open state of TSha1 channels.  相似文献   
15.
The aim of this ECVAM Status Seminar was to critically review the contributions made by ECVAM in relation to its four main task. The establishment and maintenance of the ECVAM Scientific Information Service (SIS) is a precise means of fulfilling one of these four principal duties of ECVAM. The major achievements of the SIS, and the efforts required to achieve them, are discussed, together with the immediate future for the SIS.  相似文献   
16.
The mechanisms underlying physiological regulation of alloimmune responses remain poorly defined. We investigated the roles of cytokines, CTLA-4, CD25(+) T cells, and apoptosis in regulating alloimmune responses in vivo. Two murine cardiac transplant models were used, B10.D2 (minor mismatch) and C57BL/6 (major mismatch), into BALB/c recipients. Recipients were wild type, STAT4(-/-) (Th1 deficient), or STAT6(-/-) (Th2 deficient) mice. Minor mismatched allografts were accepted spontaneously in approximately 70% of wild type and STAT4(-/-) mice. By contrast, there was significantly shorter graft survival in minor mismatched STAT6(-/-) mice. Either the adoptive transfer of STAT4(-/-) splenocytes or the administration of IL-4Fc fusion protein into STAT6(-/-) mice resulted in long term graft survival. Blocking CTLA-4 signaling accelerated the rejection in all recipients, but was more pronounced in the minor combination. This was accompanied by an increased frequency of alloreactive T cells. Furthermore, CTLA-4 blockade regulated CD4(+) or CD8(+) as well as Th1 or Th2 alloreactive T cells. Finally, while anti-CD25 treatment prolonged graft survival in the major mismatched combination, the same treatment accelerated graft rejection in the minor mismatched group. The latter was associated with an increased frequency of alloreactive T cells and inhibition of T cell apoptosis. These data demonstrate that cytokine regulation, CTLA-4 negative signaling, and T cell apoptosis play critical roles in regulating alloimmunity, especially under conditions where the alloreactive T cell clone size is relatively small.  相似文献   
17.
Patients with Sj?gren's syndrome (SS) have characteristic lymphocytic infiltrates of the salivary glands. To determine whether the B cells accumulating in the salivary glands of SS patients represent a distinct population and to delineate their potential immunopathologic impact, individual B cells obtained from the parotid gland and from the peripheral blood were analyzed for immunoglobulin light chain gene rearrangements by PCR amplification of genomic DNA. The productive immunoglobulin light chain repertoire in the parotid gland of the SS patient was found to be restricted, showing a preferential usage of particular variable lambda chain genes (V lambda 2E) and variable kappa chain genes (V kappa A27). Moreover, clonally related V(L) chain rearrangements were identified; namely, V kappa A27-J kappa 5 and V kappa A19-J kappa 2 in the parotid gland, and V lambda 1C-J lambda 3 in the parotid gland and the peripheral blood. V kappa and V lambda rearrangements from the parotid gland exhibited a significantly elevated mutational frequency compared with those from the peripheral blood (P < 0.001). Mutational analysis revealed a pattern of somatic hypermutation similar to that found in normal donors, and a comparable impact of selection of mutated rearrangements in both the peripheral blood and the parotid gland. These data indicate that there is biased usage of V(L) chain genes caused by selection and clonal expansion of B cells expressing particular V(L) genes. In addition, the data document an accumulation of B cells bearing mutated V(L) gene rearrangements within the parotid gland of the SS patient. These results suggest a role of antigen-activated and selected B cells in the local autoimmune process in SS.  相似文献   
18.
There has been considerable debate in the study of hybrid zones as to whether hybrids may be superior to parental types within the area of contact (bounded hybrid superiority). In birds, naturally occurring hybridization is relatively common, and hybridization within this group always involves mate choice. If hybrids are superior, females choosing heterospecific mates should be expected to show higher fitness under the conditions prevalent in the hybrid zone. Hybrid superiority under these circumstances would reduce reinforcement and thereby help to maintain the hybrid zone. To examine this issue, we studied reproductive performances of hybrids and parental species of gulls (Larus occidentalis and Larus glaucescens) at two colonies within a linear hybrid zone along the west coast of the United States. This hybrid zone contains predominantly gulls of intermediate phenotype. Previous studies indicated that hybrids were superior to one or both parental types, but provided no data on possible mechanisms that underlie this hybrid superiority. Using a hybrid index designed specifically for these species, we identified to phenotype more than 300 individuals associated with nests, including both individual males and females within 73 pairs in the central portion of the hybrid zone and 74 pairs in the northern portion of the hybrid zone. There was little evidence of assortative mating, and what little there was resulted solely because of pairings within intergrades. In the central hybrid zone, females paired with hybrid males produced larger clutches and hatched and fledged more chicks compared with females paired to western gull males. This was a result of heavy predation on eggs in sand habitat, where male western gulls established territories. In contrast, many hybrid males established territories in vegetated cover that was less vulnerable to predation. In the northern part of the hybrid zone, clutch size did not differ among pair categories, however, there were differences in hatching and fledging success, with females paired to hybrid males showing better success compared to females paired to glaucous-winged gull males. Hybrids showed better hatching and fledging success in the north because hybrids are more like western gulls than glaucous-winged gulls in foraging behavior, taking a higher percentage of fish in their diet, which enhances chick growth and survival. This is believed to be the first documentation of bounded hybrid superiority that delineates the mechanisms that underlie hybrid superiority.  相似文献   
19.
Pyrrolnitrin is a secondary metabolite derived from tryptophan and has strong antifungal activity. Recently we described four genes, prnABCD, from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. In the work presented here, we describe the function of each prn gene product. The four genes encode proteins identical in size and serology to proteins present in wild-type Pseudomonas fluorescens, but absent from a mutant from which the entire prn gene region had been deleted. The prnA gene product catalyzes the chlorination of l-tryptophan to form 7-chloro-l-tryptophan. The prnB gene product catalyzes a ring rearrangement and decarboxylation to convert 7-chloro-l-tryptophan to monodechloroaminopyrrolnitrin. The prnC gene product chlorinates monodechloroaminopyrrolnitrin at the 3 position to form aminopyrrolnitrin. The prnD gene product catalyzes the oxidation of the amino group of aminopyrrolnitrin to a nitro group to form pyrrolnitrin. The organization of the prn genes in the operon is identical to the order of the reactions in the biosynthetic pathway.The antibiotic pyrrolnitrin [3-chloro-4-(2′-nitro-3′-chlorophenyl)pyrrole] (PRN) is produced by many pseudomonads and has broad-spectrum antifungal activity (1, 5, 1214, 17). PRN has been implicated as an important mechanism of biological control of fungal plant pathogens by several Pseudomonas strains (1214), including P. fluorescens BL915, from which the prn genes were isolated (10).Tryptophan was identified as the precursor for PRN, based on the feeding of cultures with isotopically labeled and substituted tryptophan (2, 7, 8, 17, 25). Biosynthetic pathways were proposed as early as 1967 (7) and have been refined on the basis of tracer studies and the isolation of intermediates (Fig. (Fig.1)1) (2, 8, 17, 19, 23, 25). Recently, Hammer et al. (9) described the cloning and characterization of a 5.8-kb DNA region which encodes the PRN biosynthetic pathway. This DNA region confers the ability to produce PRN when expressed heterologously in Escherichia coli and contains four genes, prnABCD, each of which is required for PRN production. In the research described here, we used mutants in which each of the four genes was disrupted and strains which overexpress the individual genes to elucidate the function of each gene product in PRN biosynthesis. Open in a separate windowFIG. 1Biosynthetic pathways for PRN as proposed by van Pée et al. (23) (A) and by Chang et al. (2) (B). The reactions catalyzed by the PRN biosynthetic enzymes encoded by the prnABCD genes are indicated above the appropriate reaction arrows.

Bacterial strains and plasmids.

The bacterial strains and plasmids used in this study are described in Table Table1.1. Pseudomonas strains were cultured in Luria-Bertani medium at 28°C. Antibiotics, when used, were added at the following concentrations: tetracycline, 30 μg/ml; and kanamycin, 50 μg/ml. The expression vector pPEH14 consists of the Ptac promoter and rrnB ribosomal terminator from pKK223-3 (Pharmacia, Uppsala, Sweden) cloned into the BglII site of the broad-host-range plasmid pRK290 (4). Ptac is a strong constitutive promoter in Pseudomonas (unpublished data). The PRN biosynthetic genes are the coding regions described by Hammer et al. (9). Each coding region was cloned from the translation initiation codon to the stop codon by PCR with restriction sites added to the ends to facilitate cloning. For prnB, the native GTG initiation codon was changed to ATG. The clones were sequenced after PCR.

TABLE 1

Bacterial strains and plasmids used in this study
P. fluorescens strain or plasmidCharacteristicsSource or reference
Strains
 BL915Wild type10
 BL915ΔORF1Deletion in prnA of BL915, Prn, Kmr9
 BL915ΔORF2Deletion in prnB of BL915, Prn, Kmr9
 BL915ΔORF3Deletion in prnC of BL915, Prn, Kmr9
 BL915ΔORF4Deletion in prnD of BL915, Prn, Kmr9
 BL915ΔORF1–4Deletion in prnABCD of BL915, Prn, Kmr9
Plasmids
 pPEH14(prnA)pRK290 carrying Ptac functionally fused to the 1.6-kb prnA coding regionThis study
 pPEH14(prnB)pRK290 carrying Ptac functionally fused to the 1.1-kb prnB coding regionThis study
 pPEH14(prnC)pRK290 carrying Ptac functionally fused to the 1.7-kb prnC coding regionThis study
 pPEH14(prnD)pRK290 carrying Ptac functionally fused to the 1.1-kb prnD coding regionThis study
Open in a separate window

Chemical standards.

7-Cl-d,l-tryptophan (7-CT) was synthesized as described by van Pée et al. (24). Monodechloroaminopyrrolnitrin (MDA) was extracted from cultures of P. aureofaciens and verified as described by van Pée et al. (23). Aminopyrrolnitrin (APRN) was prepared from PRN by reduction with sodium dithionite (22). PRN was synthesized according to the method of Gosteli (6).

Western analysis.

To produce antigen, each prn gene was subcloned into a pET3 vector and transformed into E. coli BL21(De3) (Novagen, Inc., Madison, Wis.). Inclusion bodies were purified from induced cultures with protocols from Novagen. Inclusion body protein (100 μg) was run on a preparative Laemmli polyacrylamide electrophoresis gel, blotted to nitrocellulose filters, and stained with Ponceau S. The major band was excised, solubilized in dimethyl sulfoxide, and used by Duncroft, Inc. (Lovettsville, Va.), to immunize goats and produce antiserum against each PRN protein.Cultures of P. fluorescens BL915 were grown for 48 h in Luria-Bertani medium with the appropriate antibiotics. The cells were pelleted and resuspended in a small volume of Tris-EDTA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis were performed as described by Sambrook et al. (21). The primary antiserum (goat anti-PRN protein) was diluted 1/1,000, and the secondary antibody (rabbit anti-goat immunoglobulin G conjugated to peroxidase; Pierce, Rockford, Ill.) was diluted 1/3,000. Bands were visualized with an enhanced chemiluminescence kit (Amersham, Arlington Heights, Ill.). This Western analysis demonstrated that each antibody recognized a single protein band from wild-type BL915, and these bands were not present in BL915ΔORF1–4 (Fig. (Fig.2).2). The molecular weights of the recognized proteins were consistent with the sizes predicted from the gene sequences. Each prn gene was expressed on a plasmid in BL915ΔORF1–4. In each case, the protein product of the cloned gene reacted only with the expected antibody and was identical in size to the band detected by that antibody in wild-type BL915 (Fig. (Fig.2).2). Open in a separate windowFIG. 2Western blot analysis of the protein products of prn genes cloned from P. fluorescens BL915. Individual genes were expressed on plasmids in the host strain BL915ΔORF1–4. BL915 wild-type and BL915ΔORF1–4 controls are included on each blot. Blots A, B, C, and D were probed with antibodies raised against the products of prnA, prnB, prnC, and prnD, respectively. Arrows indicate the positions of the 60- and 42-kDa molecular mass markers.

Intermediate analysis and feeding experiments.

To determine which biosynthetic intermediates were produced by the prn gene deletion mutants, 2-day-old cultures were extracted with an equal volume of ethyl acetate. The organic phase was dried under vacuum, and the residue was dissolved in a small volume of methanol. Thin-layer chromatography (TLC) was performed on silica-coated plates with toluene or hexane-ethyl acetate (2:1) as the mobile phase. PRN, APRN, MDA, and aminophenylpyrrole (APP) were visualized with van Urk’s reagent as described previously (22).To further clarify which biosynthetic step was blocked in each deletion mutant, intermediate feeding experiments were conducted. Cultures (10 ml) were incubated at 28°C for 48 h. Biosynthetic intermediates were dissolved in a small volume of methanol and added to 4 ml of culture at the following final concentrations: 7-CT, 2.5 μg/ml; MDA, 25 μg/ml; APRN, 12.5 μg/ml. The cultures were incubated for an additional 4 h at 28°C and then extracted with ethyl acetate and analyzed by TLC and liquid chromatography-mass spectrometry as described above.MDA, APRN, and PRN were not detected in cultures of BL915ΔORF1 (Fig. (Fig.3),3), indicating that this mutant is blocked at an early step in PRN biosynthesis. BL915ΔORF1 was able to produce PRN when 7-CT, MDA, or APRN was supplied exogenously (Table (Table2).2). When prnA was expressed in the absence of other prn genes (i.e., in BL915ΔORF1–4), 7-chloro-l-tryptophan (7-CLT) accumulated. The identity of 7-CLT was verified by comparison of results of high-performance liquid chromatography and mass spectra with chemically synthesized 7-CT. These results indicate that the prnA gene product catalyzes the chlorination of l-tryptophan. Open in a separate windowFIG. 3Accumulation of PRN biosynthetic intermediates in P. fluorescens BL915 and prn gene deletion mutants derived from it. Extracts from 2-day-old cultures were separated by TLC on silica plates with hexane-ethyl acetate (2:1 [vol/vol]) as the mobile phase. Metabolites were visualized with van Urk’s reagent. Arrows indicate the positions of MDA (olive green), APRN (reddish brown), and PRN (purple).

TABLE 2

Production of PRN by deletion mutants when supplied with biosynthetic intermediates in the growth medium
StrainResult with intermediate added to culturesa
7-CTMDAAPRN
BL915ΔORF1+++
BL915ΔORF2++
BL915ΔORF3+
BL915ΔORF4
Open in a separate windowa+, PRN detected; −, PRN not detected. Hohaus et al. (11) presented additional evidence of the chlorinating activity of the prnA gene product, specifically, the chlorination of l-tryptophan to form 7-CLT by cell extracts from P. fluorescens strains which expressed the prnA gene, but which did not contain any of the other prn genes. To clarify which isomer was produced, Hohaus et al. (11) extracted 7-CLT from the bacteria and oxidized it to the corresponding indole-3-pyruvic acid with amino acid oxidases. Since the isolated 7-CLT was degraded by l-amino acid oxidase, but not by d-amino acid oxidase (11), it must be in the l configuration. The deduced amino acid sequence for prnA contains a consensus NAD binding site (9), and, indeed, NADH is a required cofactor for the prnA gene product.Cultures of BL915ΔORF2 produced 7-CLT, but 7-chloro-d-tryptophan (11) and other PRN biosynthetic intermediates were not detected (Fig. (Fig.3).3). BL915ΔORF2 produced PRN when supplied with exogenous MDA or APRN, but not when supplied with 7-CT (Table (Table2).2). When prnB was expressed in strain BL915ΔORF1–4, exogenously supplied 7-CT was converted to MDA (Fig. (Fig.4).4). These results indicate that the prnB gene product catalyzes the rearrangement of the indole ring to a phenylpyrrole and the decarboxylation of 7-CLT to convert 7-CLT to MDA. While it is somewhat surprising that a single enzyme carries out both the ring rearrangement and decarboxylation, Chang et al. (2) postulated a mechanism for such a reaction on a single enzyme some 16 years ago. The prnB gene product also catalyzed the production of APP (Fig. (Fig.4),4), presumably by using tryptophan as a substrate. Open in a separate windowFIG. 4In vivo conversion of PRN biosynthetic intermediates by the products of single prn genes. Individual genes were expressed on plasmids in the host strain BL915ΔORF1–4, and biosynthetic intermediates were added to the culture medium as indicated. Culture extracts were separated by TLC on silica plates with toluene as the mobile phase. Metabolites were visualized with van Urk’s reagent. Arrows indicate the positions of APP (dark green), MDA (olive green), APRN (reddish brown), and PRN (purple).MDA accumulated in cultures of BL915ΔORF3, but APP, APRN, and PRN were not detected (Fig. (Fig.3).3). BL915ΔORF3 was able to produce PRN when supplied with APRN in the culture medium, but not when supplied with 7-CT or MDA (Table (Table2).2). Strain BL915ΔORF1–4 expressing prnC converted exogenously supplied MDA to APRN (Fig. (Fig.4).4). These data indicate that the prnC gene product catalyzes the chlorination of MDA to form APRN. Cell extracts of the P. fluorescens strain which overexpresses the prnC gene (but does not contain the other prn genes) can also catalyze the chlorination of MDA to form APRN (11).The prnC gene is homologous to the chl gene from Streptomyces aureofaciens, which encodes a chlorinating enzyme for tetracycline biosynthesis (3, 9). Like prnA, the prnC deduced amino acid sequence contains a consensus NAD binding region (9), and NADH is required for the chlorination of MDA (11). While both prnA and prnC encode halogenating enzymes, they show no homology to previously cloned haloperoxidases (9) or to each other. Furthermore, in contrast to haloperoxidases (16), the two NADH-dependent halogenating enzymes in the PRN biosynthesis pathway are substrate specific (i.e., the tryptophan halogenase does not catalyze the chlorination of MDA and vice versa) (11).APRN accumulated in cultures of BL915ΔORF4 (Fig. (Fig.3),3), and this mutant was not able to produce PRN when supplied with any of the known PRN biosynthetic intermediates. Strain BL915ΔORF1–4 expressing prnD converted exogenously supplied APRN to PRN (Fig. (Fig.4).4). These results indicate that the prnD gene product catalyzes the oxidation of the amino group of APRN to a nitro group forming PRN. In vitro experiments by Kirner and van Pée (15) had suggested that this reaction is catalyzed by a chloroperoxidase; however, gene disruption experiments demonstrated that chloroperoxidases are not involved in PRN biosynthesis in vivo (16). Instead, this oxidation is more likely to be catalyzed by a class IA oxygenase (20), as suggested by the homology of prnD with these enzymes (9).We have shown that each prn gene encodes a protein found in the wild-type BL915 strain and have demonstrated in vivo that these four gene products carry out four biochemical steps which convert l-tryptophan to PRN. None of the conversions were observed in strain BL915ΔORF1–4, from which the entire 5.8-kb prn gene region has been deleted (Fig. (Fig.4).4). The arrangement of the genes in the operon is identical to the sequence of reactions in the biosynthetic pathway proposed by van Pée et al. (23) (Fig. (Fig.11).Chang et al. (2) proposed an alternate biosynthetic scheme (Fig. (Fig.1B)1B) and reported the conversion of exogenously supplied APP to PRN in vivo. Similarly, Zhou et al. (25) reported the conversion of APP to APRN in a cell-free system. These workers concluded that APP is an intermediate in PRN biosynthesis and that ring rearrangement precedes chlorination (Fig. (Fig.1B).1B). In the present study, APP accumulated only in strains which overexpressed the prnB gene. Furthermore, APP was not detected in cultures of BL915ΔORF1, which contains functional prnBCD genes expressed from the native promoter, as would be expected if the ring rearrangement (catalyzed by the prnB gene product) occurs before the first chlorination step (catalyzed by the prnA gene product). Like Hamill et al. (8) and van Pée et al. (23), we demonstrated that exogenously supplied 7-CT is converted to PRN. These results, together with the finding that the gene product of prnA catalyzes the NADH-dependent chlorination of l-tryptophan to 7-CLT (11), support the biosynthetic pathway proposed by van Pée et al. (23) (Fig. (Fig.1A)1A) and suggest that APP is a side product or dead-end metabolite. Purification and kinetic characterization of the prnA and prnB gene products, including investigations of substrate specificity and regioselectivity, will further clarify the roles of 7-CLT and APP in the PRN biosynthetic pathway.If APP is indeed a dead-end metabolite, it would be advantageous to tightly regulate the amount of prnB gene product present in cells, thus minimizing the diversion of substrate into APP. The prnB gene begins with GTG (9), which is a two- to threefold-less-efficient initiation codon than ATG (18); however, the prnB open reading frame is apparently translationally coupled to the prnA open reading frame (9). Coupling increases translational efficiency and is thought to be a mechanism to ensure coordinate expression of the coupled genes (18). In PRN biosynthesis, translational coupling of prnA and prnB may be a mechanism to regulate the level of prnB gene product present in cells and minimize the diversion of tryptophan to APP.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号