首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   34篇
  413篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   7篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   17篇
  2014年   11篇
  2013年   17篇
  2012年   23篇
  2011年   34篇
  2010年   18篇
  2009年   25篇
  2008年   24篇
  2007年   19篇
  2006年   17篇
  2005年   30篇
  2004年   20篇
  2003年   17篇
  2002年   28篇
  2001年   10篇
  2000年   6篇
  1999年   9篇
  1998年   11篇
  1997年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1990年   6篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
  1969年   2篇
  1965年   1篇
  1939年   1篇
  1936年   1篇
  1922年   1篇
  1920年   1篇
  1917年   1篇
  1914年   1篇
  1908年   1篇
  1901年   1篇
排序方式: 共有413条查询结果,搜索用时 15 毫秒
61.
Laccases are copper-containing phenol oxidases that are commonly found in many types of plant, insect, fungi and bacteria. Whilst phenol oxidases have been well characterized in fungal species, laccase-type enzymes originating from bacteria have been much less well defined. Bacteria belonging to the family Azotobacteraceae share many morphological characteristics with strains already known to exhibit polyphenol and phenol oxidase activity; and hence the aim of this work was to identify and characterize a novel laccase from the isolated strain Azotobacter chroococcum SBUG 1484 in an attempt to provide further understanding of the roles such enzymes play in physiological development. Laccase activity was clearly observed through oxidation of 2,6-dimethoxyphenol, other typical substrates including: methoxy-monophenols, ortho- and para-diphenols, 4-hydroxyindole, and the non-phenolic compound para-phenylenediamine. A. chroococcum SBUG 1484 showed production of a cell-associated phenol oxidase when grown under nitrogen-fixing conditions, and was also observed when cells enter the melanogenic and encystment stages of growth. Catechol which is structurally related to melanin compounds was also released from Azotobacter cells into the surrounding culture medium during nitrogen-fixing growth. From our results we propose that a membrane-bound laccase plays an important role in the formation of melanin, which was monitored to correlate with progression of A. chroococcum SBUG 1484 cells into the encystment stage of growth.  相似文献   
62.
Laccases are able to mediate both cleavage and synthesis processes. The basis for this dual reaction capability lies in the property of the enzyme laccase to oxidize phenolic, and to some extent non-phenolic substances, to reactive radicals which can undergo on the one hand separations of small substitutents or large molecule parts from the parent compound and on the other hand coupling reactions with other radicals or molecules which are not themselves oxidizable by laccase. The cleavage of the non-phenolic compound 4-morpholinoaniline as well as the deamination of 4-aminophenol and the dechlorination of 4-chlorophenol resulted in the formation of 1,4-hydroquinone which is immediately oxidized by laccase to 1,4-benzoquinone. The formation of the 1,4-hydroquinone/1,4-benzoquinone is the rate limiting step for the synthesis of the heteromolecular dimers and trimers composed of 1,4-benzoquinone and one or two molecules of morpholine. In addition to the synthesis of new compounds from the cleavage products, 4-morpholinoaniline polymerized probably via azo groups and C-N bonds to a homomolecular dimer and trimer. Similarities and differences in cleavage and synthesis reactions catalyzed by the low redox potential laccase of Myceliophthora thermophila (0.46 V) and the high redox potential laccase of Pycnoporus cinnabarinus (0.79 V) were determined. In addition, the dependency of the cleavage and synthesis efficiencies on the (a) structure and redox potential of the laccase, (b) structure and redox potential of the substrate, (c) pH value of the buffer used, (d) incubation temperature, (e) solvent concentration, and (f) laccase activity is discussed in general.  相似文献   
63.
64.

Objective

Adjustment disorders are re-conceptualized in the DSM-5 as a stress-related disorder; however, besides the impact of an identifiable stressor, the specification of a stress concept, remains unclear. This study is the first to examine an existing stress-model from the general population, in patients diagnosed with adjustment disorders, using a longitudinal design.

Methods

The study sample consisted of 108 patients consecutively admitted for adjustment disorders. Associations of stress perception, emotional distress, resources, and mental health were measured at three time points: the outpatients’ presentation, admission for inpatient treatment, and discharge from the hospital. To evaluate a longitudinal stress model of ADs, we examined whether stress at admission predicted mental health at each of the three time points using multiple linear regressions and structural equation modeling. A series of repeated-measures one-way analyses of variance (rANOVAs) was performed to assess change over time.

Results

Significant within-participant changes from baseline were observed between hospital admission and discharge with regard to mental health, stress perception, and emotional distress (p<0.001). Stress perception explained nearly half of the total variance (44%) of mental health at baseline; the adjusted R2 increased (0.48), taking emotional distress (i.e., depressive symptoms) into account. The best predictor of mental health at discharge was the level of emotional distress (i.e., anxiety level) at baseline (β = −0.23, R2 corr = 0.56, p<0.001). With a CFI of 0.86 and an NFI of 0.86, the fit indices did not allow for acceptance of the stress-model (Cmin/df = 15.26; RMSEA = 0.21).

Conclusions

Stress perception is an important predictor in adjustment disorders, and mental health-related treatment goals are dependent on and significantly impacted by stress perception and emotional distress.  相似文献   
65.
For many G protein-coupled receptors, agonist-induced activation is followed by desensitization, internalization, and resensitization. In most cases, these processes are dependent upon interaction of agonist-occupied receptor with cytoplasmic beta-arrestins. The ligand-induced intramolecular rearrangements of the receptor responsible for the desensitized versus active conformational states, which dictate both the pharmacological properties of ligands and the biological activity of G protein-coupled receptors, have not been fully elucidated. Here, we identify specific interactions between parathyroid hormone (PTH)-related protein and the human PTH type 1 receptor (PTH1Rc) and the related receptor conformational changes that lead to beta-arrestin-2-mediated desensitization. PTH-related protein analogs modified at position 1 induced selective stabilization of the active G protein-coupled state of the receptor, resulting in lack of beta-arrestin-2 recruitment to the cell membrane, sustained cAMP signaling, and absence of ligand-receptor complex internalization. Mechanistically, the ligands modified at position 1, interacting with the extracellular end of helix VI of PTH1Rc, produced a translocation of transmembrane helices V and VI that differed from that induced by the cognate agonist, resulting in significantly different conformations of the third intracellular loop. These results show how specific interactions between PTH1Rc and its ligands may stabilize distinct conformational states, representing either the active G protein-coupled or a desensitized beta-arrestin-coupled receptor state. In addition, they establish that sustained biological activity of PTH1Rc may be induced by appropriately designed agonist ligands.  相似文献   
66.
The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO) cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm). Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration.  相似文献   
67.
68.
69.
Dietary iron may contribute to colon cancer risk via production of reactive oxygen species (ROS). The aim of the study was to determine whether physiological ferric/ferrous iron induces oxidative DNA damage in human colon cells. Therefore, differentiated human colon tumour cells (HT29 clone 19A) were incubated with ferric-nitrilotriacetate (Fe-NTA) or with haemoglobin and DNA breaks and oxidised bases were determined by microgelelectrophoresis. The effects of Fe-NTA were measured with additional H(2)O(2) (75microM) and quercetin (25-100microM) treatment. Analytic detection of iron in cell cultures, treated with 250microM Fe-NTA for 15 min to 24h, showed that 48.02+/-5.14 to 68.31+/-2.11% were rapidly absorbed and then detectable in the cellular fraction. Fe-NTA (250-1000microM) induced DNA breaks and oxidised bases, which were enhanced by subsequent H(2)O(2) exposure. Simultaneous incubation of HT29 clone 19A cells with Fe-NTA and H(2)O(2) for 15 min, 37 degrees C did not change the effect of H(2)O(2) alone. The impact of Fe-NTA and H(2)O(2)-induced oxidative damage is reduced by the antioxidant quercetin (75-67% of H(2)O(2)-control). Haemoglobin was as effective as Fe-NTA in inducing DNA damage. From these results we can conclude that iron is taken up by human colon cells and participates in the induction of oxidative DNA damage. Thus, iron or its capacity to catalyse ROS-formation, is an important colon cancer risk factor. Inhibition of damage by quercetin reflects the potential of antioxidative compounds to influence this risk factor. Quantitative data on the genotoxic impact of ferrous iron (e.g. from red meat) relative to the concentrations of antioxidants (from plant foods) in the gut are now needed to determine the optimal balance of food intake that will reduce exposure to this type of colon cancer risk factor.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号