首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   29篇
  318篇
  2022年   3篇
  2021年   5篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   14篇
  2014年   11篇
  2013年   13篇
  2012年   22篇
  2011年   31篇
  2010年   13篇
  2009年   21篇
  2008年   17篇
  2007年   15篇
  2006年   13篇
  2005年   22篇
  2004年   16篇
  2003年   16篇
  2002年   14篇
  2001年   5篇
  2000年   3篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1972年   1篇
  1969年   2篇
  1965年   1篇
  1939年   1篇
  1936年   1篇
  1922年   1篇
  1920年   1篇
  1917年   1篇
  1914年   1篇
  1908年   1篇
  1901年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
121.
The environmental pollutant 4-sec-butylphenol (4-sec-BP) which possesses estrogenic properties was transformed by the aerobic Gram-positive bacteria Mycobacterium neoaurum and Nocardia cyriacigeorgica into three main products (P1–P3) which were isolated and structurally characterized in detail. Two of them were products of a process resembling anaerobic metabolism of alkylphenols based on modifications of the alkyl side chain of 4-sec-BP. The first product (P1) was identified as 4-(2-hydroxy-1-methylpropyl)-phenol. The second product P2 was isolated as a mixture of at least four structures which could be identified as I 4-sec-butylidenecyclohexa-2,5-dienone; II 4-(1-methylenepropyl)-phenol; III 4-(1-methylpropenyl)-phenol; and IV 4-(1-methylallyl)-phenol. In contrast to P1 and P2, the third product (P3) resulted from a modification of the hydroxyl group of 4-sec-BP. This product was only formed by M. neoaurum and was identified as the glucoside conjugate 4-sec-butylphenol-α-d-glucopyranoside. Since in general, fungi synthesize sugar conjugates to detoxify hazardous pollutants, the formation of this conjugate is a peculiarity of M. neoaurum. Thus, altogether, six products were formed from 4-sec-BP and different transformation pathways are introduced. The hydroxylating and glucosylating capacity of the characterized bacteria open up applications in environmental protection.  相似文献   
122.
On the basis of our recent results, the N-terminal sequence of HIV-1 Tat protein as a natural competitive inhibitor of dipeptidyl peptidase IV (DP IV) is supposed to interact directly with the active site of DP IV hence mediating its immunosuppressive effects via specific DP IV interactions. Of special interest is the finding that amino acid substitutions of the Tat(1–9) peptide (MDPVDPNIE) in position 5 with S-isoleucine and in position 6 with S-leucine led to peptides with strongly reduced inhibitory activity suggesting differences in the solution conformation of the three analogues. Therefore, 1H NMR techniques in conjunction with molecular modelling have been used here to determine the solution structure of Tat(1–9), I5-Tat(1–9) and L6-Tat(1–9) and to examine the influence of amino acid exchanges on structural features of these peptides. The defined structures revealed differences in the conformations what might be the reason for different interactions of these Tat(1–9) analogues with certain amino acids of the active site of DP IV. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
123.
Comparative analysis of Acinetobacters: three genomes for three lifestyles   总被引:1,自引:0,他引:1  
Acinetobacter baumannii is the source of numerous nosocomial infections in humans and therefore deserves close attention as multidrug or even pandrug resistant strains are increasingly being identified worldwide. Here we report the comparison of two newly sequenced genomes of A. baumannii. The human isolate A. baumannii AYE is multidrug resistant whereas strain SDF, which was isolated from body lice, is antibiotic susceptible. As reference for comparison in this analysis, the genome of the soil-living bacterium A. baylyi strain ADP1 was used. The most interesting dissimilarities we observed were that i) whereas strain AYE and A. baylyi genomes harbored very few Insertion Sequence elements which could promote expression of downstream genes, strain SDF sequence contains several hundred of them that have played a crucial role in its genome reduction (gene disruptions and simple DNA loss); ii) strain SDF has low catabolic capacities compared to strain AYE. Interestingly, the latter has even higher catabolic capacities than A. baylyi which has already been reported as a very nutritionally versatile organism. This metabolic performance could explain the persistence of A. baumannii nosocomial strains in environments where nutrients are scarce; iii) several processes known to play a key role during host infection (biofilm formation, iron uptake, quorum sensing, virulence factors) were either different or absent, the best example of which is iron uptake. Indeed, strain AYE and A. baylyi use siderophore-based systems to scavenge iron from the environment whereas strain SDF uses an alternate system similar to the Haem Acquisition System (HAS). Taken together, all these observations suggest that the genome contents of the 3 Acinetobacters compared are partly shaped by life in distinct ecological niches: human (and more largely hospital environment), louse, soil.  相似文献   
124.
The metal-sulfur bonding present in the transition metal-thiolate complexes CpFe(CO)2SCH3, CpFe(CO)2StBu, CpRe(NO)(PiPr3)SCH3, and CpRe(NO)(PPh3)SCH3 (Cp = η5-C5H5) is investigated via gas-phase valence photoelectron spectroscopy. For all four complexes a strong dπ-pπ interaction exists between a filled predominantly metal d orbital of the [CpML2]+ fragment and the purely sulfur 3pπ lone pair of the thiolate. This interaction results in the highest occupied molecular orbital having substantial M-S π antibonding character. In the case of CpFe(CO)2SCH3, the first (lowest energy) ionization is from the Fe-S π orbital, the next two ionizations are from predominantly metal d orbitals, and the fourth ionization is from the Fe-S π orbital. The pure sulfur pπ lone pair of the thiolate fragment is less stable than the filled metal d orbitals of the [CpFe(CO)2]+ fragment, resulting in a Fe-S π combination that is higher in sulfur character than the Fe-S π combination. Interestingly, substitution of a tert-butyl group for the methyl group on the thiolate causes little shift in the first ionization, in contrast to the shift observed for related thiols. This is a consequence of the delocalization and electronic buffering provided by the Fe-S dπ-pπ interaction. For CpRe(NO)(PiPr3)SCH3 and CpRe(NO)(PPh3)SCH3, the strong acceptor ability of the nitrosyl ligand rotates the metal orbitals for optimum backbonding to the nitrosyl, and the thiolate rotates along with these orbitals to a different preferred orientation from that of the Fe complexes. The initial ionization is again the M-S π combination with mostly sulfur character, but now has considerable mixing among several of the valence orbitals. Because of the high sulfur character in the HOMO, ligand substitution on the metal also has a small effect on the ionization energy in comparison to the shifts observed for similar substitutions in other molecules. These experiments show that, contrary to the traditional interpretation of oxidation of metal complexes, removal of an electron from these metal-thiolate complexes is not well represented by an increase in the formal oxidation state of the metal, nor by simple oxidation of the sulfur, but instead is a variable mix of metal and sulfur content in the highest occupied orbital.  相似文献   
125.
The compound p-tert-amylphenol (p-(1,1-dimethylpropyl)phenol) is a widely used disinfectant belonging to the group of short branched-chain alkylphenols. It is produced in or imported into the USA with more than one million pounds per year and can be found in the environment in surface water, sediments, and soil. We have investigated for the first time the biotransformation of this disinfectant and the accumulation of metabolites by five bacterial strains, three yeast strains, and three filamentous fungi, selected because of their ability to transform either aromatic or branched-chain compounds. Of the 11 microorganisms tested, one yeast strain and three bacteria could not transform the disinfectant despite of a very low concentration applied (0.005 %). None of the other seven organisms was able to degrade the short branched alkyl chain of p-tert-amylphenol. However, two yeast strains, two filamentous fungi, and two bacterial strains attacked the aromatic ring system of the disinfectant via the hydroxylated intermediate 4-(1,1-dimethyl-propyl)-benzene-1,2-diol resulting in two hitherto unknown ring fission products with pyran and furan structures, 4-(1,1-dimethyl-propyl)-6-oxo-6-H-pyran-2-carboxylic acid and 2-[3-(1,1-dimethyl-propyl)-5-oxo-2H-furan-2-yl]acetic acid. While the disinfectant was toxic to the organisms applied, one of the ring cleavage products was not. Thus, a detoxification of the disinfectant was achieved by ring cleavage. Furthermore, one filamentous fungus formed sugar conjugates with p-tert-amylphenol as another mechanism of detoxification of toxic environmental pollutants. With this work, we can also contribute to the allocation of unknown chemical compounds within environmental samples to their parent compounds.  相似文献   
126.
The timely development of safe and effective vaccines against avian influenza virus of the H5N1 subtype will be of the utmost importance in the event of a pandemic. Our aim was first to develop a safe live vaccine which induces both humoral and cell-mediated immune responses against human H5N1 influenza viruses and second, since the supply of embryonated eggs for traditional influenza vaccine production may be endangered in a pandemic, an egg-independent production procedure based on a permanent cell line. In the present article, the generation of a complementing Vero cell line suitable for the production of safe poxviral vaccines is described. This cell line was used to produce a replication-deficient vaccinia virus vector H5N1 live vaccine, dVV-HA5, expressing the hemagglutinin of a virulent clade 1 H5N1 strain. This experimental vaccine was compared with a formalin-inactivated whole-virus vaccine based on the same clade and with different replicating poxvirus-vectored vaccines. Mice were immunized to assess protective immunity after high-dose challenge with the highly virulent A/Vietnam/1203/2004(H5N1) strain. A single dose of the defective live vaccine induced complete protection from lethal homologous virus challenge and also full cross-protection against clade 0 and 2 challenge viruses. Neutralizing antibody levels were comparable to those induced by the inactivated vaccine. Unlike the whole-virus vaccine, the dVV-HA5 vaccine induced substantial amounts of gamma interferon-secreting CD8 T cells. Thus, the nonreplicating recombinant vaccinia virus vectors are promising vaccine candidates that induce a broad immune response and can be produced in an egg-independent and adjuvant-independent manner in a proven vector system.Avian H5N1 influenza viruses, currently circulating mainly in southeast Asia, are likely to cause the next influenza pandemic (18, 26, 37). The supply of embryonated eggs for traditional influenza vaccine production may be endangered in this case. Efforts to produce inactivated H5N1 vaccines in permanent cells have resulted in large-scale manufacturing, for instance, in Vero cells (21). This approach, based either on fermentation of H5N1 wild-type (wt) viruses (21) or on viruses attenuated by reverse genetics (9, 31), is the most straightforward strategy for egg-independent, rapid vaccine production.A further approach that may result in more widely available, egg-independent H5 vaccines is the use of recombinant viral vectors expressing protective antigens. Promising protection results were obtained so far with adenovirus-based vectors in mouse models (13, 14). Adenovirus vectors are usually produced in permanent complementing cell lines (11) and have been widely used in clinical trials. Cancellation of a recent trial involving human immunodeficiency virus adenovirus vectors due to suspected enhancement of disease, however, may complicate the future use of these vectors (41). Poxvirus vectors, including recombinant modified vaccinia virus Ankara (MVA) (1, 43), constitute a further class of vectors that have been used to express H5N1 influenza virus antigens (5, 22, 44, 46). Usually, however, the large-scale production of MVA is carried out in primary chicken cells, since these are the most efficient production substrates and are also accepted by regulators. In a pandemic, this production platform may not be available because permanent nontumorigenic avian cell lines are currently not available for production.In this study, we used a permanent cell line, modified Vero cells, to produce nonreplicating vaccinia virus vectors expressing the H5 hemagglutinin (HA), the major influenza virus protective antigen. The defective vaccinia virus (dVV) vectors are safe due to their lack of replication capacity in normal hosts, while they share the superior immunizing properties of poxviral live vaccines (15, 33). Previously, a permanent cell line based on rabbit kidney cells was engineered to express the essential vaccinia virus D4R gene encoding the enzyme uracil-DNA-glycosylase. This cell line allowed the construction of replication-deficient vaccinia virus vectors (15). In this work, a complementing system based on Vero cells was established and used to produce the defective vaccinia virus vector dVV-HA5. The vector was used to immunize mice and was compared to an inactivated whole-virus (whv) vaccine and to replicating control viruses. The dVV-HA5 candidate vaccine induced neutralizing antibodies and full protection, similar to results with an inactivated whv vaccine. Further, it is important to ensure that the immune responses generated by a pandemic influenza vaccine give long-lived, broad, cross-clade protection. While antibody responses to influenza virus provide protective immunity, T-cell responses are also thought to play an important role in clearance of and recovery from infections. Thus, a vaccine which can produce both effective humoral and T-cell responses would be advantageous. A vaccinia virus vector-based pandemic influenza vaccine has the potential to provide this advantage.  相似文献   
127.
Acinetobacter sp. strain ADP1 is a nutritionally versatile soil bacterium closely related to representatives of the well-characterized Pseudomonas aeruginosa and Pseudomonas putida. Unlike these bacteria, the Acinetobacter ADP1 is highly competent for natural transformation which affords extraordinary convenience for genetic manipulation. The circular chromosome of the Acinetobacter ADP1, presented here, encodes 3325 predicted coding sequences, of which 60% have been classified based on sequence similarity to other documented proteins. The close evolutionary proximity of Acinetobacter and Pseudomonas species, as judged by the sequences of their 16S RNA genes and by the highest level of bidirectional best hits, contrasts with the extensive divergence in the GC content of their DNA (40 versus 62%). The chromosomes also differ significantly in size, with the Acinetobacter ADP1 chromosome <60% of the length of the Pseudomonas counterparts. Genome analysis of the Acinetobacter ADP1 revealed genes for metabolic pathways involved in utilization of a large variety of compounds. Almost all of these genes, with orthologs that are scattered in other species, are located in five major 'islands of catabolic diversity', now an apparent 'archipelago of catabolic diversity', within one-quarter of the overall genome. Acinetobacter ADP1 displays many features of other aerobic soil bacteria with metabolism oriented toward the degradation of organic compounds found in their natural habitat. A distinguishing feature of this genome is the absence of a gene corresponding to pyruvate kinase, the enzyme that generally catalyzes the terminal step in conversion of carbohydrates to pyruvate for respiration by the citric acid cycle. This finding supports the view that the cycle itself is centrally geared to the catabolic capabilities of this exceptionally versatile organism.  相似文献   
128.
Greater and lesser spotted eagles (Aquila clanga, A. pomarina) are two closely related forest eagles overlapping in breeding range in east-central Europe. In recent years a number of mixed pairs have been observed, some of which fledged hybrid young. Here we use mitochondrial (control region) DNA sequences and AFLP markers to estimate genetic differentiation and possible gene flow between these species. In a sample of 83 individuals (61 pomarina, 20 clanga, 2 F1-hybrids) we found 30 mitochondrial haplotypes which, in a phylogenetic network, formed two distinct clusters differing on average by 3.0% sequence divergence. The two species were significantly differentiated both at the mitochondrial and nuclear (AFLP) genetic level. However, five individuals with pomarina phenotype possessed clanga-type mtDNA, suggesting occasional gene flow. Surprisingly, AFLP markers indicated that these mismatched birds (originating from Germany, E Poland and Latvia) were genetically intermediate between the samples of individuals in which mtDNA haplotype and phenotype agreed. This indicates that mismatched birds were either F1 or recent back-cross hybrids. Mitochondrial introgression was asymmetrical (no pomarina haplotype found in clanga so far), which may be due to assortative mating by size. Gene flow of nuclear markers was estimated to be about ten times stronger than for mtDNA, indicating a sex-bias in hybrid fertility in accordance with Haldanes rule. Hybridization between the two species may be more frequent and may occur much further west than hitherto assumed. This is supported by the recent discovery of a mixed pair producing at least one fledgling in NE Germany.  相似文献   
129.
The European Centre for the Validation of Alternative Methods (ECVAM) proposes to make the validation process more flexible, while maintaining its high standards. The various aspects of validation are broken down into independent modules, and the information necessary to complete each module is defined. The data required to assess test validity in an independent peer review, not the process, are thus emphasised. Once the information to satisfy all the modules is complete, the test can enter the peer-review process. In this way, the between-laboratory variability and predictive capacity of a test can be assessed independently. Thinking in terms of validity principles will broaden the applicability of the validation process to a variety of tests and procedures, including the generation of new tests, new technologies (for example, genomics, proteomics), computer-based models (for example, quantitative structure-activity relationship models), and expert systems. This proposal also aims to take into account existing information, defining this as retrospective validation, in contrast to a prospective validation study, which has been the predominant approach to date. This will permit the assessment of test validity by completing the missing information via the relevant validation procedure: prospective validation, retrospective validation, catch-up validation, or a combination of these procedures.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号