首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   469篇
  免费   45篇
  2022年   5篇
  2021年   6篇
  2019年   7篇
  2018年   4篇
  2017年   5篇
  2016年   6篇
  2015年   19篇
  2014年   12篇
  2013年   20篇
  2012年   25篇
  2011年   46篇
  2010年   15篇
  2009年   26篇
  2008年   21篇
  2007年   15篇
  2006年   16篇
  2005年   29篇
  2004年   21篇
  2003年   20篇
  2002年   18篇
  2001年   8篇
  1999年   8篇
  1998年   8篇
  1997年   6篇
  1996年   3篇
  1993年   3篇
  1992年   7篇
  1991年   5篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1979年   8篇
  1978年   5篇
  1976年   5篇
  1975年   6篇
  1974年   3篇
  1973年   2篇
  1972年   6篇
  1971年   2篇
  1970年   7篇
  1969年   8篇
  1968年   6篇
  1967年   3篇
  1965年   2篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
151.
Foamy viruses (FV) are unusual among retroviruses since they require both Gag and Env structural proteins for particle egress. Recently significant progress has been made towards the mechanistic understanding of the viral release process, in particular that of retroviruses, and the viral domains and cellular pathways involved. However little is currently known about domains of FV structural proteins and cellular proteins engaged in this process. By mutational analysis of sequence motifs in prototype FV (PFV) Gag, bearing homology to known late assembly (L) domains, a PSAP motif with L domain function that was functionally interchangeable by heterologous L domains was identified. In contrast the inactivation of a PPPI motif had no significant influence on PFV particle release, although mutant viral particles displayed reduced infectivity. Similarly mutation of an evolutionary conserved YXXL motif revealed no classical L-domain function but resulted in release of noninfectious viruslike particles. Biochemical and electron microscopy analysis demonstrated that these mutant particles incorporated all viral structural proteins but contained aberrantly capsid structures, suggesting a role in capsid assembly for this PFV Gag sequence motif. In line with the mutational analysis, overexpression of dominant negative (DN) mutants and wild-type TSG101 but not the DN mutant of AIP-1/ALIX reduced PFV particle release and infectivity. Furthermore, DN mutants of Vps4A, Vps4B, and CHMP3 inhibited PFV egress and infectivity. Taken together these results demonstrate that PFV, like other viruses, requires components of the vacuolar protein sorting (VPS) machinery for egress and enters the VPS pathway through interaction with TSG101.  相似文献   
152.
We analyzed 74 cryostat sections of central gastric tumor, tumor margin, and normal gastric epithelium using ProteinChip Arrays and SELDI-TOF MS. One peak was significantly down-regulated in tumor tissue (P = 1.43 x 10(-6)) and identified as pepsinogen C using MS/MS analysis and immunodepletion. This signal was further characterized by immunohistochemistry. This work demonstrates that differentially expressed signals can be identified and assessed using a proteomic approach comprising tissue-microdissection, protein profiling, and immunohistochemistry.  相似文献   
153.
A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is presented. (15)N relaxation measurements confirm earlier results indicating that R. capsulatus ferrocytochrome c(2) exhibits minor rotational anisotropy in solution. The current study is focused on the use of deuterium relaxation in side chain methyl groups, which has been shown to provide a detailed and accurate measure of internal dynamics. Results obtained indicate that the side chains of ferrocytochrome c(2) exhibit a wide range of motional amplitudes, but are more rigid than generally found in the interior of nonprosthetic group bearing globular proteins. This unusual rigidity is ascribed to the interactions of the protein with the large heme prosthetic group. This observation has significant implications for the potential of the heme-protein interface to modulate the redox properties of the protein and also points to the need for great precision in the design and engineering of heme proteins.  相似文献   
154.
Hehmann  Annett  Krienitz  Lothar  Koschel  Rainer 《Hydrobiologia》2001,448(1-3):83-96
Lake Große Fuchskuhle (Brandenburg, Germany) is a naturally acidic bog lake that was artificially divided into four basins by large plastic curtains for biomanipulation experiments in 1990. Different numbers of perch were added to each compartment beginning in the spring of 1993. The species composition and abundance of phytoplankton, pH, nutrient concentrations, dissolved organic carbon (DOC) and chlorophyll a content were analyzed at regular intervals during 1991 and 1998. The division of the lake resulted in divergent developments in the physical and chemical environment of the compartments. This study compared the phytoplankton assemblages of the Northeast- (NE) and Southwest- (SW) basins which differed strongly in chemistry during the investigation period. Divergent developments in phytoplankton species composition in both basins can be explained by changes in physical and chemical conditions (bottom-up effects). Increased pH values and DOC concentrations probably favoured mass developments of the dinoflagellate Gymnodinium uberrimum since 1993, while increased nutrients (dissolved inorganic carbon, total nitrogen and especially total phosphorus) as well as further changes in pH and DOC led to the dominance of the raphidophyte Gonyostomum semen in 1998. This bloom was characterized by extreme biomasses of up to 143 mg l–1 wet weight, corresponding with high chlorophyll a concentrations of up to 413 g l–1 at the same time. In contrast, no significant relationship between experimental manipulations by piscivorous fish stocking (top-down effects) and phytoplankton biomass were observed.  相似文献   
155.

Background  

Bacteria in periodontal pockets develop complex sessile communities that attach to the tooth surface. These highly dynamic microfloral environments challenge both clinicians and researchers alike. The exploration of structural organisation and bacterial interactions within these biofilms is critically important for a thorough understanding of periodontal disease. In recent years, Filifactor alocis, a fastidious, Gram-positive, obligately anaerobic rod was repeatedly identified in periodontal lesions using DNA-based methods. It has been suggested to be a marker for periodontal deterioration. The present study investigated the epidemiology of F. alocis in periodontal pockets and analysed the spatial arrangement and architectural role of the organism in in vivo grown subgingival biofilms.  相似文献   
156.
B-cell development is tightly regulated, including the induction of B-cell memory and antibody-secreting plasmablasts and plasma cells. In the last decade, we have expanded our understanding of effector functions of B cells as well as their roles in human autoimmune diseases. The current review addresses the role of certain stages of B-cell development as well as plasmablasts/plasma cells in immune regulation under normal and autoimmune conditions with particular emphasis on systemic lupus erythematosus. Based on preclinical and clinical data, B cells have emerged increasingly as both effector cells as well as cells with immunoregulatory potential.  相似文献   
157.
158.
In Pseudomonas aeruginosa, the algH gene regulates the cellular concentrations of a number of enzymes and the production of several virulence factors, and is suggested to serve a global regulatory function. The precise mechanism by which the algH gene product, the AlgH protein, functions is unknown. The same is true for AlgH family members from other bacteria. In order to lay the groundwork for understanding the physical underpinnings of AlgH function, we examined the structure and physical properties of AlgH in solution. Under reducing conditions, results of NMR, electrophoretic mobility, and sedimentation equilibrium experiments indicate AlgH is predominantly monomeric and monodisperse in solution. Under nonreducing conditions intra and intermolecular disulfide bonds form, the latter promoting AlgH oligomerization. The high‐resolution solution structure of AlgH reveals alpha/beta‐sandwich architecture fashioned from ten beta strands and seven alpha helices. Comparison with available structures of orthologues indicates conservation of overall structural topology. The region of the protein most strongly conserved structurally also shows the highest amino acid sequence conservation and, as revealed by hydrogen‐deuterium exchange studies, is also the most stable. In this region, evolutionary trace analysis identifies two clusters of amino acid residues with the highest evolutionary importance relative to all other AlgH residues. These frame a partially solvent exposed shallow hydrophobic cleft, perhaps identifying a site for intermolecular interactions. The results establish a physical foundation for understanding the structure and function of AlgH and AlgH family proteins and should be of general importance for further investigations of these and related proteins. Proteins 2015; 83:1137–1150. © 2015 Wiley Periodicals, Inc.  相似文献   
159.
Candida albicans bloodstream infection is increasingly frequent and can result in disseminated candidiasis associated with high mortality rates. To analyze the innate immune response against C. albicans, fungal cells were added to human whole-blood samples. After inoculation, C. albicans started to filament and predominantly associate with neutrophils, whereas only a minority of fungal cells became attached to monocytes. While many parameters of host-pathogen interaction were accessible to direct experimental quantification in the whole-blood infection assay, others were not. To overcome these limitations, we generated a virtual infection model that allowed detailed and quantitative predictions on the dynamics of host-pathogen interaction. Experimental time-resolved data were simulated using a state-based modeling approach combined with the Monte Carlo method of simulated annealing to obtain quantitative predictions on a priori unknown transition rates and to identify the main axis of antifungal immunity. Results clearly demonstrated a predominant role of neutrophils, mediated by phagocytosis and intracellular killing as well as the release of antifungal effector molecules upon activation, resulting in extracellular fungicidal activity. Both mechanisms together account for almost of C. albicans killing, clearly proving that beside being present in larger numbers than other leukocytes, neutrophils functionally dominate the immune response against C. albicans in human blood. A fraction of C. albicans cells escaped phagocytosis and remained extracellular and viable for up to four hours. This immune escape was independent of filamentation and fungal activity and not linked to exhaustion or inactivation of innate immune cells. The occurrence of C. albicans cells being resistant against phagocytosis may account for the high proportion of dissemination in C. albicans bloodstream infection. Taken together, iterative experiment–model–experiment cycles allowed quantitative analyses of the interplay between host and pathogen in a complex environment like human blood.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号