首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   16篇
  国内免费   1篇
  337篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   22篇
  2014年   23篇
  2013年   29篇
  2012年   33篇
  2011年   29篇
  2010年   27篇
  2009年   16篇
  2008年   15篇
  2007年   20篇
  2006年   12篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   10篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1955年   1篇
排序方式: 共有337条查询结果,搜索用时 15 毫秒
101.
We developed quantitative fimA genotype assays and applied them in a pilot study investigating the fimbrial genotype distribution of Porphyromonas gingivalis in European subjects with or without chronic periodontitis. P. gingivalis was found in 71% and 9% of the samples from patients and healthy subjects, respectively. Enumeration of total P. gingivalis cell numbers by polymerase chain reaction and immunofluorescence showed excellent correspondence (r = 0.964). 73% of positive samples contained multiple fimA genotypes, but generally one genotype predominated by one to three orders of magnitude. Genotype II predominated in 60% of the samples. Genotype IV occurred with similar prevalence (73%) as genotype II but predominated in only 20% of the samples. Genotypes I, III and V were of much lower prevalence and cell densities of the latter two remained sparse. Our results suggest marked differences among the fimA genotypes' ability to colonize host sites with high cell numbers.  相似文献   
102.
Genetic defects in DNA repair mechanisms and cell cycle checkpoint (CCC) genes result in increased genomic instability and cancer predisposition. Discovery of mammalian homologs of yeast CCC genes suggests conservation of checkpoint mechanisms between yeast and mammals. However, the role of many CCC genes in higher eukaryotes remains elusive. Here, we report that targeted deletion of an N-terminal part of mRad17, the mouse homolog of the Schizosaccharomyces pombe Rad17 checkpoint clamp-loader component, resulted in embryonic lethality during early/mid-gestation. In contrast to mouse embryos, embryonic stem (ES) cells, isolated from mRad17(5'Delta/5'Delta) embryos, produced truncated mRad17 and were viable. These cells displayed hypersensitivity to various DNA-damaging agents. Surprisingly, mRad17(5'Delta/5'Delta) ES cells were able to arrest cell cycle progression upon induction of DNA damage. However, they displayed impaired homologous recombination as evidenced by a strongly reduced gene targeting efficiency. In addition to a possible role in DNA damage-induced CCC, based on sequence homology, our results indicate that mRad17 has a function in DNA damage-dependent recombination that may be responsible for the sensitivity to DNA-damaging agents.  相似文献   
103.
Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato.  相似文献   
104.
A method is described for the simultaneous determination of vanilmandelic acid, 3-methoxy-4-hydroxyphenylethylene glycol, 5-hydroxyindoleacetic acid, and homovanillic acid in a human plasma sample using reversed-phase high-performance liquid chromatography with column switching and amperometric detection. Two methods of sample preparation were tested. Liquid—liquid extraction yields better recoveries, is more selective and precise than solid-phase extraction and allows a shorter time of chromatographic analysis. Estimated plasma values of the metabolites from healthy controls are in good agreement with previously reported levels. Studies of alcoholics at the beginning of the delirium tremens provided different plasma levels of the metabolites, dependent on the different duration — and hence the severity — of the delirium.  相似文献   
105.
During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently.  相似文献   
106.
The major PKC substrates MARCKS and MacMARCKS (MRP) are membrane-binding proteins implicated in cell spreading, integrin activation and exocytosis. According to the myristoyl-electrostatic switch model the co-operation between the myristoyl moiety and the positively charged effector domain (ED) is an essential mechanism by which proteins bind to membranes. Loss of the electrostatic interaction between the ED and phospholipids, such as Ptdins(4,5)P2, results in the translocation of such proteins to the cytoplasm. While this model has been extensively tested for the binding of MARCKS far less is known about the mechanisms regulating MRP localization. We demonstrate that after phosphorylation, MRP is relocated to the intracellular membranes of late endosomes and lysosomes. MRP binds to all membranes via its myristoyl moiety, but for its localization at the plasma membrane the ED is also required. Although the ED of MRP can bind to Ptdins(4,5)P2 in vitro, this binding is not essential for its retention at or targeting to the plasma membrane. We conclude that the co-operation between the myristoyl moiety and the ED is not required for the binding to membranes in general but that it is essential for the targeting of MRP to the plasma membrane in a Ptdins(4,5)P2-independent manner.  相似文献   
107.
The present study explores the hypothesis that a high intra-abdominal pressure (IAP) loads the ligaments of the pelvic girdle to such an extent that frequent periods of high IAP might cause pain and/or interfere with recovery of patients with pelvic girdle pain (PGP). In a theoretical model the size of the load of IAP on the pelvic girdle was computed. The diameters of abdomen and pelvis needed for the calculations were measured on MRI scans; the IAP values during activities were gained from literature. In slim, healthy subjects the calculated load on the pelvic ring during activities of daily living was 26.0-52.0 N with peaks to 135 N. During straining, vigorous work or heavy exercises the load could increase to values ranging from 104 to 520 N. The load is higher in subjects with pain or fatigue, or in case of a distended abdomen. When the load on the pelvic ring induced by IAP is larger than 100 N, the force exceeds the force at which a pelvic belt relieves complaints in PGP; at 90 N, the force is larger than the force at which isometric hip adduction provokes pain in PGP. We conclude that the size of the load induced by IAP on the pelvic girdle seems to be sufficient to cause pain in patients with PGP and might interfere with recovery. It seems worthwhile to give patients with PGP instructions to reduce IAP as much as possible during activities.  相似文献   
108.
Peroxisome deficiency in liver causes hepatosteatosis both in patients and in mice. Here, we studied the mechanisms that contribute to this lipid accumulation and to activation of peroxisome proliferator activated receptor α (PPARα) by using liver-specific Pex5−/− mice (L-Pex5−/− mice). Surprisingly, steatosis was accompanied both by increased mitochondrial β-oxidation capacity, confirming previous observations, and by impaired de novo lipid synthesis mediated by reduced expression of sterol regulatory element binding protein 1c and its targets. As a consequence, when challenged with a high fat diet, L-Pex5−/− mice were protected from adiposity. Hepatic fatty acid uptake was strongly increased whereas the expression of apolipoproteins and the lipoprotein assembly factor microsomal triglyceride transfer protein were markedly reduced resulting in reduced secretion of very low density lipoproteins. Most of these changes seemed to be orchestrated by the endogenous activation of PPARα, challenging the assumption that PPARα activation in hepatocytes requires fatty acid synthase dependent de novo fatty acid synthesis. Expression of cholesterol synthesizing enzymes and cholesterol levels were not affected in peroxisome deficient liver. In conclusion, increased fatty acid uptake driven by endogenous PPARα activation and reduced fatty acid secretion cause hepatosteatosis in peroxisome deficient livers.  相似文献   
109.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4αPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+]e) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+]e. It was also much slower in the presence of [Ca2+]e in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4αPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号