首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   11篇
  2015年   22篇
  2014年   23篇
  2013年   30篇
  2012年   33篇
  2011年   29篇
  2010年   27篇
  2009年   17篇
  2008年   15篇
  2007年   20篇
  2006年   13篇
  2005年   18篇
  2004年   16篇
  2003年   14篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1955年   1篇
排序方式: 共有342条查询结果,搜索用时 718 毫秒
81.
Caspase-3 and -7 are considered functionally redundant proteases with similar proteolytic specificities. We performed a proteome-wide screen on a mouse macrophage lysate using the N-terminal combined fractional diagonal chromatography technology and identified 46 shared, three caspase-3-specific, and six caspase-7-specific cleavage sites. Further analysis of these cleavage sites and substitution mutation experiments revealed that for certain cleavage sites a lysine at the P5 position contributes to the discrimination between caspase-7 and -3 specificity. One of the caspase-7-specific substrates, the 40 S ribosomal protein S18, was studied in detail. The RPS18-derived P6–P5′ undecapeptide retained complete specificity for caspase-7. The corresponding P6–P1 hexapeptide still displayed caspase-7 preference but lost strict specificity, suggesting that P′ residues are additionally required for caspase-7-specific cleavage. Analysis of truncated peptide mutants revealed that in the case of RPS18 the P4–P1 residues constitute the core cleavage site but that P6, P5, P2′, and P3′ residues critically contribute to caspase-7 specificity. Interestingly, specific cleavage by caspase-7 relies on excluding recognition by caspase-3 and not on increasing binding for caspase-7.Caspases, a family of evolutionarily conserved proteases, mediate apoptosis, inflammation, proliferation, and differentiation by cleaving many cellular substrates (13). The apoptotic initiator caspases (caspase-8, -9, and -10) are activated in large signaling platforms and propagate the death signal by cleavage-induced activation of executioner caspase-3 and -7 (4, 5). Most of the cleavage events occurring during apoptosis have been attributed to the proteolytic activity of these two executioner caspases, which can act on several hundreds of proteins (2, 3, 6, 7). The substrate degradomes of the two main executioner caspases have not been determined but their identification is important to gaining greater insight in their cleavage specificity and biological functions.The specificity of caspases was rigorously profiled by using combinatorial tetrapeptide libraries (8), proteome-derived peptide libraries (9), and sets of individual peptide substrates (10, 11). The results of these studies indicate that specificity motifs for caspase-3 and -7 are nearly indistinguishable with the canonical peptide substrate, DEVD, used to monitor the enzymatic activity of both caspase-3 and -7 in biological samples. This overlap in cleavage specificity is manifested in their generation of similar cleavage fragments from a variety of apoptosis-related substrates such as inhibitor of caspase-activated DNase, keratin 18, PARP,1 protein-disulfide isomerase, and Rho kinase I (for reviews, see Refs. 2, 3, and 7). This propagated the view that these two caspases have completely redundant functions during apoptosis. Surprisingly, mice deficient in one of these caspases (as well as mice deficient in both) have distinct phenotypes. Depending on the genetic background of the mice, caspase-3-deficient mice either die before birth (129/SvJ) or develop almost normally (C57BL/6J) (1214). This suggests that dynamics in the genetic background, such as increased caspase-7 expression, compensate for the functional loss of caspase-3 (15). In the C57BL/6J background, caspase-7 single deficient mice are also viable, whereas caspase-3 and -7 double deficient mice die as embryos, further suggesting redundancy (1214). However, because caspase-3 and -7 probably arose from gene duplication between the Cephalochordata-Vertebrata diversion (16), they might have acquired different substrate specificities during evolution. Caspase-3 and -7 do exhibit different activities on a few arbitrarily identified natural substrates, including BID, X-linked inhibitor of apoptosis protein, gelsolin, caspase-6, ataxin-7, and co-chaperone p23 (1720). In addition, caspase-3 generally cleaves more substrates during apoptosis than caspase-7 and therefore appears to be the major executioner caspase. Moreover, a recent report describing caspase-1-dependent activation of caspase-7, but not of caspase-3, in macrophages in response to microbial stimuli supports the idea of a non-redundant function for caspase-7 downstream of caspase-1 (21).Commercially available “caspase-specific” tetrapeptide substrates are widely used for specific caspase detection, but they display substantial promiscuity and cannot be used to monitor individual caspases in cells (22, 23). Detecting proteolysis by measuring the release of C-terminal fluorophores, such as 7-amino-4-methylcoumarin (amc), restricts the specificity of these peptide substrates to non-prime cleavage site residues, which may have hampered the identification of specific cleavage events. To address this limitation, a recently developed proteomics technique, called proteomic identification of protease cleavage sites, was used to map both non-prime and prime preferences for caspase-3 and -7 on a tryptic peptide library (9). However, no clear distinction in peptide recognition motifs between caspase-3 and -7 could be observed (9). Because not all classical caspase cleavage sites are processed (7), structural or post-translational higher order constraints are likely involved in steering the cleavage site selectivity. Peptide-based approaches generally overlook such aspects.We made use of the COFRADIC N-terminal peptide sorting methodology (2426) to profile proteolytic events of caspase-3 and -7 in a macrophage proteome labeled by triple stable isotope labeling by amino acids in cell culture (SILAC), which allowed direct comparison of peak intensities in peptide MS spectra and consequent quantification of N termini that are equally, preferably, or exclusively generated by the action of caspase-3 or -7 (26, 27). We identified 55 cleavage sites in 48 protein substrates, encompassing mutual, preferred, and unique caspase-3 and -7 cleavage sites.  相似文献   
82.
A mutant of tomato (Solanum lycopersicum) with reduced abscisic acid (ABA) production (sitiens) exhibits increased resistance to the necrotrophic fungus Botrytis cinerea. This resistance is correlated with a rapid and strong hydrogen peroxide-driven cell wall fortification response in epidermis cells that is absent in tomato with normal ABA production. Moreover, basal expression of defense genes is higher in the mutant compared with the wild-type tomato. Given the importance of this fast response in sitiens resistance, we investigated cell wall and cuticle properties of the mutant at the chemical, histological, and ultrastructural levels. We demonstrate that ABA deficiency in the mutant leads to increased cuticle permeability, which is positively correlated with disease resistance. Furthermore, perturbation of ABA levels affects pectin composition. sitiens plants have a relatively higher degree of pectin methylesterification and release different oligosaccharides upon inoculation with B. cinerea. These results show that endogenous plant ABA levels affect the composition of the tomato cuticle and cell wall and demonstrate the importance of cuticle and cell wall chemistry in shaping the outcome of this plant-fungus interaction.Plant defense against pathogens often involves the induction of mechanisms after pathogen recognition, including defense signaling, cell wall strengthening, and localized cell death, but plants also have preformed chemical and structural defense barriers. Fungal pathogens that penetrate the plant tissue directly through the outer surface, rather than via natural plant openings or wounds, must pass through the plant cuticle and epidermal cell wall. Penetration of the host surface happens either by physical means (i.e. by a highly localized pressure in the appressorium) or by chemical means (i.e. by the release of hydrolyzing enzymes). Necrotrophic plant pathogens like Botrytis cinerea typically use the latter strategy. During penetration, they produce cutinases and pectinolytic enzymes such as pectin methylesterases, endopolygalacturonases, and exopolygalacturonases (van Kan, 2006).The cuticle is a hydrophobic barrier that covers the aerial surfaces of the plant. It is mainly composed of cutin, a polyester matrix, and soluble waxes, a complex mixture of hydrophobic material containing very-long-chain fatty acids and their derivatives, embedded into and deposited onto the cutin matrix. It plays an important role in organ development and protection against water loss (Yephremov et al., 1999; Sieber et al., 2000; Kurata et al., 2003; Jung et al., 2006). The cuticle is generally considered as a mere passive physical barrier against pathogen invasion, but it has also been recognized as a potential source of signaling and elicitor molecules (Jenks et al., 1994; Reina-Pinto and Yephremov, 2009). Plant cutin monomers trigger cutinase secretion in pathogenic fungi (Woloshuk and Kolattukudy, 1986), and cutin and wax components initiate appressorium formation and penetration in appressorium-forming pathogens (Kolattukudy et al., 1995; Francis et al., 1996; Gilbert et al., 1996; Fauth et al., 1998; Dickman et al., 2003). In plants, cutin monomers induce pathogenesis-related gene expression and elicit hydrogen peroxide (H2O2) synthesis (Fauth et al., 1998; Kim et al., 2008; Park et al., 2008). Transgenic tomato (Solanum lycopersicum) plants expressing the yeast Δ-9 desaturase gene had high levels of cutin monomers that inhibited powdery mildew (Erysiphe polygoni) spore germination, leading to enhanced resistance (Wang et al., 2000). Arabidopsis (Arabidopsis thaliana) plants expressing a fungal cutinase or mutants with a defective cuticle, such as long-chain acyl-CoA synthetase2 and bodyguard, are generally more susceptible to bacteria and equally susceptible to biotrophic fungi but are surprisingly resistant to B. cinerea (Bessire et al., 2007; Chassot et al., 2007; Tang et al., 2007). It has been postulated that a defective or thin cuticle encourages these plants to constitutively express defense-related mechanisms and to secrete antifungal compounds to the plant surface, thereby inhibiting B. cinerea growth (Bessire et al., 2007; Chassot et al., 2007). In addition, cuticle metabolic pathways might directly modulate plant-pathogen interactions by interacting with hormonally regulated defense pathways (Fiebig et al., 2000; Garbay et al., 2007; Mang et al., 2009) or with complex lipid signaling pathways leading to hypersensitive cell death (Raffaele et al., 2008).Once plant pathogens have penetrated the cuticle, they secrete hydrolases that target the plant cell wall (ten Have et al., 1998; Oeser et al., 2002; Vogel et al., 2002; Jakob et al., 2007) that is mainly composed of cellulose, hemicellulose, and pectin (35% of total dry weight). Pectin consists mainly of the polysaccharides homogalacturonan and rhamnogalacturonan I and II. Homogalacturonans are linear chains of α-(1–4)-linked d-GalA residues that can be methylesterified at C-6. Rhamnogalacturonan I and II are more complex, branched polysaccharides. B. cinerea is typically regarded as a pectinolytic pathogen because it possesses an efficient pectinolytic machinery, including a variety of polygalacturonases and pectin methylesterases (PMEs), some of which are important virulence factors (ten Have et al., 1998, 2001; Valette-Collet et al., 2003; Kars et al., 2005). Pectins are a rich source of oligogalacturonides (OGAs), biologically active signaling molecules that can activate plant defense mechanisms (Hahn et al., 1981; Côté and Hahn, 1994; Messiaen and Van Cutsem, 1994; Ridley et al., 2001). The eliciting capacity of the OGAs was shown to depend on their size, which in turn is influenced by the methylesterification pattern of the homogalacturonan fraction (Mathieu et al., 1991; Messiaen and Van Cutsem, 1994). To counteract the activity of fungal pectinases, many plants express polygalacturonase-inhibiting proteins and PME inhibitors, which are localized in the cell wall. The role of these proteins in plant defense against B. cinerea has been extensively demonstrated (Powell et al., 2000; Ferrari et al., 2003; Sicilia et al., 2005; Joubert et al., 2006, 2007; Lionetti et al., 2007). The interaction with the inhibitors not only limits the destructive potential of polygalacturonases but also leads to the accumulation of elicitor-active OGAs (De Lorenzo and Ferrari, 2002). How OGAs are perceived by the plant is still unclear, but in view of the diversity of biological activities and structure requirements, they are thought to be recognized through different proteins, including receptor-like kinases, wall-associated kinases, arabinogalactan proteins, and Pro-rich proteins (Côté and Hahn, 1994; Showalter, 2001; Humphrey et al., 2007).Over the past years, the role of abscisic acid (ABA) in plant-pathogen interactions has gained increased attention. ABA is mostly negatively correlated with resistance against phytopathogens through down-regulation of defense responses orchestrated by salicylic acid, jasmonic acid, and ethylene (Mohr and Cahill, 2001; Audenaert et al., 2002; Mauch-Mani and Mauch, 2005; Asselbergh et al., 2008). In tomato, the ABA-deficient mutant sitiens has an enhanced resistance to B. cinerea (Audenaert et al., 2002) that depends on a timely, localized oxidative burst leading to rapid epidermal cell wall fortification and a faster and higher induction of defense-related gene expression upon infection compared with the wild type (Asselbergh et al., 2007). Moreover, basal defense gene expression is higher in this mutant than in the wild type. As this early response is of vital importance for the resistant reaction of tomato against B. cinerea, we investigated whether alterations in cuticle and/or cell wall, which form the first barrier to the invading pathogen, affect resistance. We demonstrate that the sitiens cuticle is more permeable and that permeability is positively correlated with resistance to B. cinerea. Furthermore, differences in pectin composition and rate of methylesterification occur. Together, these data hint at an unanticipated role for extracellular matrix components in the resistance of tomato against B. cinerea and thus shed new light on the largely unexplored interrelationship between the extracellular matrix and plant-pathogen interactions.  相似文献   
83.
Quaegebeur A  Segura I  Carmeliet P 《Neuron》2010,68(3):321-323
The role of pericytes in the control of blood-brain barrier (BBB) integrity has remained enigmatic. In this issue, Bell et al. and two concurrent studies highlight that pericyte loss causes BBB breakdown and hypoperfusion. Remarkably, these vascular changes precede neurodegeneration and cognitive defects in old age.  相似文献   
84.
In this article, the characterization and evolution of pseudo-endoglucanases and a putative expansin-like gene in the migratory nematode Ditylenchus africanus are described. Four genes were cloned with a very high similarity to the endoglucanase Da-eng1, which, however, lack a part of the catalytic domain most probably due to homologous recombination. Owing to this deletion, at least one of the catalytic residues of the corresponding protein is missing, and hence these genes are possibly pseudogenes. In two of the pseudo-endoglucanase genes, the deletions cause a frameshift (Da-engdel2, Da-engdel4), while two others (Da-engdel1, Da-engdel3) code for protein sequences with an intact carbohydrate-binding module (CBM). Recombinant proteins for Da-ENG1, Da-ENGDEL1, and Da-ENGDEL3 were demonstrated to bind to cellulose, while only Da-ENG1 showed cellulose-degrading activity. This indicates that Da-ENGDEL1 and Da-ENGDEL3 which lack cellulase activity, could still exert a function similar to cellulose-binding proteins (CBPs). Next to the pseudo-endoglucanases, a putative expansin-like gene (Da-exp1) was identified, consisting of a signal peptide, an expansin-like domain, and a CBM. This domain structure was never found before in nematode expansin-like proteins. Interestingly, the CBM of the expansin-like gene is very similar to the endoglucanase CBMs, and a conserved intron position in the CBM of nematode endoglucanases, expansin-like genes, and CBPs indicates a common origin for these domains. This suggests that domain shuffling is an important mechanism in the evolution of cell wall-modifying enzymes in nematodes.  相似文献   
85.
The amyloid peptides Aβ40 and Aβ42 of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aβ42 seems more pathogenic than Aβ40, the reason for this is not well understood. We show here that small alterations in the Aβ42:Aβ40 ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aβ42:Aβ40 ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aβ species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aβ peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti‐amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non‐toxic intermediates.  相似文献   
86.
Glucocorticoids act in part via glucocortocoid receptor binding to hormone response elements (HREs), but their direct target genes in vivo are still largely unknown. We developed the criterion that genomic occurrence of paired HREs at an inter-HRE distance less than 200 bp predicts hormone responsiveness, based on synergy of multiple HREs, and HRE information from known target genes. This criterion predicts a substantial number of novel responsive genes, when applied to genomic regions 10 kb upstream of genes. Multiple-tissue in situ hybridization showed that mRNA expression of 6 out of 10 selected genes was induced in a tissue-specific manner in mice treated with a single dose of corticosterone, with the spleen being the most responsive organ. Caveolin-1 was strongly responsive in several organs, and the HRE pair in its upstream region showed increased occupancy by glucocorticoid receptor in response to corticosterone. Our approach allowed for discovery of novel tissue specific glucocorticoid target genes, which may exemplify responses underlying the permissive actions of glucocorticoids.  相似文献   
87.
Statins are inhibitors of 3-hydroxy 3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol biosynthesis. Recent clinico-epidemiologic studies correlate patients receiving statin therapy with having reduced mortality associated with severe bacterial infection. Investigating the effect of statins on the innate immune capacity of phagocytic cells against the human pathogen Staphylococcus aureus, we uncovered a beneficial effect of statins on bacterial clearance by phagocytes, although, paradoxically, both phagocytosis and oxidative burst were inhibited. Probing instead for an extracellular mechanism of killing, we found that statins boosted the production of antibacterial DNA-based extracellular traps (ETs) by human and murine neutrophils and also monocytes/macrophages. The effect of statins to induce phagocyte ETs was linked to sterol pathway inhibition. We conclude that a drug therapy taken chronically by millions alters the functional behavior of phagocytic cells, which could have ramifications for susceptibility and response to bacterial infections in these patients.  相似文献   
88.
Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.  相似文献   
89.
We developed quantitative fimA genotype assays and applied them in a pilot study investigating the fimbrial genotype distribution of Porphyromonas gingivalis in European subjects with or without chronic periodontitis. P. gingivalis was found in 71% and 9% of the samples from patients and healthy subjects, respectively. Enumeration of total P. gingivalis cell numbers by polymerase chain reaction and immunofluorescence showed excellent correspondence (r = 0.964). 73% of positive samples contained multiple fimA genotypes, but generally one genotype predominated by one to three orders of magnitude. Genotype II predominated in 60% of the samples. Genotype IV occurred with similar prevalence (73%) as genotype II but predominated in only 20% of the samples. Genotypes I, III and V were of much lower prevalence and cell densities of the latter two remained sparse. Our results suggest marked differences among the fimA genotypes' ability to colonize host sites with high cell numbers.  相似文献   
90.
As a halotolerant bacterial species, Brevibacterium epidermis DSM 20659 can grow at relatively high salinity, tolerating up to 2 M NaCl. It synthesizes ectoine and the intracellular content increases with the medium salinity, with a maximum of 0.14 g ectoine/g CDW at 1 M NaCl. Sugar-stressed cells do not synthesize ectoine. Ectoine synthesis is also affected by the presence of external osmolytes. Added betaine is taken up and completely replaced ectoine, while L-proline is only temporarily accumulated after which ectoine is synthesized. The strain can metabolize ectoine; L-glutamate is a better carbon source for ectoine synthesis than L-aspartate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号