全文获取类型
收费全文 | 128篇 |
免费 | 18篇 |
专业分类
146篇 |
出版年
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 6篇 |
2017年 | 2篇 |
2016年 | 4篇 |
2015年 | 5篇 |
2014年 | 6篇 |
2013年 | 9篇 |
2012年 | 11篇 |
2011年 | 17篇 |
2010年 | 8篇 |
2009年 | 6篇 |
2008年 | 1篇 |
2007年 | 6篇 |
2006年 | 8篇 |
2005年 | 10篇 |
2004年 | 9篇 |
2003年 | 12篇 |
2002年 | 10篇 |
2001年 | 1篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 2篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有146条查询结果,搜索用时 15 毫秒
71.
Fluorescence In Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria 总被引:9,自引:13,他引:9 下载免费PDF全文
Fluorescence in situ hybridization (FISH) with horseradish peroxidase (HRP)-labeled oligonucleotide probes and tyramide signal amplification, also known as catalyzed reporter deposition (CARD), is currently not generally applicable to heterotrophic bacteria in marine samples. Penetration of the HRP molecule into bacterial cells requires permeabilization procedures that cause high and most probably species-selective cell loss. Here we present an improved protocol for CARD-FISH of marine planktonic and benthic microbial assemblages. After concentration of samples onto membrane filters and subsequent embedding of filters in low-gelling-point agarose, no decrease in bacterial cell numbers was observed during 90 min of lysozyme incubation (10 mg ml−1 at 37°C). The detection rates of coastal North Sea bacterioplankton by CARD-FISH with a general bacterial probe (EUB338-HRP) were significantly higher (mean, 94% of total cell counts; range, 85 to 100%) than that with a monolabeled probe (EUB338-mono; mean, 48%; range, 19 to 66%). Virtually no unspecific staining was observed after CARD-FISH with an antisense EUB338-HRP. Members of the marine SAR86 clade were undetectable by FISH with a monolabeled probe; however, a substantial population was visualized by CARD-FISH (mean, 7%; range, 3 to 13%). Detection rates of EUB338-HRP in Wadden Sea sediments (mean, 81%; range, 53 to 100%) were almost twice as high as the detection rates of EUB338-mono (mean, 44%; range, 25 to 71%). The enhanced fluorescence intensities and signal-to-background ratios make CARD-FISH superior to FISH with directly labeled oligonucleotides for the staining of bacteria with low rRNA content in the marine environment. 相似文献
72.
Fischerauer E Heidari N Neumayer B Deutsch A Weinberg AM 《Journal of molecular histology》2011,42(6):513-522
Injuries to growth plates may initiate the formation of reversible or irreversible bone-bridges, may leading to bone length
discrepancy or axis deviation. As vascular invasion is essential for the formation of bone tissue, the aim of our study was
to investigate the kinetic expression of Vascular Endothelial Growth Factor (VEGF) and its receptors R1 and R2 and the ingrowth
of vessels in the formation of bone bridges in a rat physeal injury model. Quantitative Real-Time Polymerase Chain Reaction
was performed for VEGF and its receptors. Samples from the proximal physis of the tibial bone were immunohistochemically evaluated
for the expression of VEGF and its R1 and R2 receptors and Laminin. Morphologically, physeal bone bridge formation was validated
by means of Magnetic Resonance Imaging. Kinetic expression of VEGF and VEGF-R1 mRNA documented a tendency towards an increase
in expression on day 7. Histological analyses showed a hematoma containing bone debris on day 1 which was replaced with bony
trabeculae by day 14, forming a bone bridge by day 28 which was preceded and accompanied by angiogenesis and consistent with
MRI data. VEGF and VEGF-R2 was expressed on the debris within the hematoma and bone trabeculae from days 1 to 28. VEGF-R1
expression was only noted until day 14. The findings of our study suggest that physeal bone bridge formation is in part triggered
by VEGF expression and associated with angiogenesis, which was shown to precede bone bridge formation and may be further stimulated
through VEGF-positive bone debris. 相似文献
73.
Contribution of Archaea to Total Prokaryotic Production in the Deep Atlantic Ocean 总被引:9,自引:0,他引:9 下载免费PDF全文
Gerhard J. Herndl Thomas Reinthaler Eva Teira Hendrik van Aken Cornelius Veth Annelie Pernthaler Jakob Pernthaler 《Applied microbiology》2005,71(5):2303-2309
Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the oceanic carbon cycle. 相似文献
74.
Ester Roos-Engstrand Jamshid Pourazar Annelie F Behndig Anders Blomberg Anders Bucht 《Respiratory research》2010,11(1):128
Background
A suggested role for T cells in COPD pathogenesis is based on associations between increased lung cytotoxic T lymphocyte (CD8+) numbers and airflow limitation. CD69 is an early T cell activation marker. Natural Killer cell group 2 D (NKG2D) receptors are co-stimulatory molecules induced on CD8+ T cells upon activation. The activating function of NKG2 D is triggered by binding to MHC class 1 chain-related (MIC) molecules A and B, expressed on surface of stressed epithelial cells. The aim of this study was to evaluate the expression of MIC A and B in the bronchial epithelium and NKG2 D and CD69 on BAL lymphocytes in subjects with COPD, compared to smokers with normal lung function and healthy never-smokers.Methods
Bronchoscopy with airway lavages and endobronchial mucosal biopsy sampling was performed in 35 patients with COPD, 21 healthy never-smokers and 16 smokers with normal lung function. Biopsies were immunohistochemically stained and BAL lymphocyte subsets were determined using flow cytometry.Results
Epithelial CD3+ lymphocytes in bronchial biopsies were increased in both smokers with normal lung function and in COPD patients, compared to never-smokers. Epithelial CD8+ lymphocyte numbers were higher in the COPD group compared to never-smoking controls. Among gated CD3+cells in BAL, the percentage of CD8+ NKG2D+ cells was enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. The percentage of CD8+ CD69+ cells and cell surface expression of CD69 were enhanced in patients with COPD and smokers with normal lung function, compared to never-smokers. No changes in the expression of MIC A or MIC B in the airway epithelium could be detected between the groups, whereas significantly decreased soluble MICB was detected in bronchial wash from smokers with normal lung function, compared to never-smokers.Conclusions
In COPD, we found increased numbers of cytotoxic T cells in both bronchial epithelium and airway lumen. Further, the proportions of CD69- and NKG2D-expressing cytotoxic T cells in BAL fluid were enhanced in both subjects with COPD and smokers with normal lung function and increased expression of CD69 was found on CD8+ cells, indicating the cigarette smoke exposure-induced expansion of activated cytotoxic T cells, which potentially can respond to stressed epithelial cells. 相似文献75.
In angiosperm flower development the identity of the floral organs is determined by the A, B and C factors. Here we present the characterisation of three homologues of the A class gene APETALA2 (AP2) from the conifer Picea abies (Norway spruce), Picea abies APETALA2 LIKE1 (PaAP2L1), PaAP2L2 and PaAP2L3. Similar to AP2 these genes contain sequence motifs complementary to miRNA172 that has been shown to regulate AP2 in Arabidopsis. The genes display distinct expression patterns during plant development; in the female-cone bud PaAP2L1 and PaAP2L3 are expressed in the seed-bearing ovuliferous scale in a pattern complementary to each other, and overlapping with the expression of the C class-related gene DAL2. To study the function of PaAP2L1 and PaAP2L2 the genes were expressed in Arabidopsis. The transgenic PaAP2L2 plants were stunted and flowered later than control plants. Flowers were indeterminate and produced an excess of floral organs most severely in the two inner whorls, associated with an ectopic expression of the meristem-regulating gene WUSCHEL. No homeotic changes in floral-organ identities occurred, but in the ap2-1 mutant background PaAP2L2 was able to promote petal identity, indicating that the spruce AP2 gene has the capacity to substitute for an A class gene in Arabidopsis. In spite of the long evolutionary distance between angiosperms and gymnosperms and the fact that gymnosperms lack structures homologous to sepals and petals our data supports a functional conservation of AP2 genes among the seed plants. 相似文献
76.
Lundin A Bok CM Aronsson L Björkholm B Gustafsson JA Pott S Arulampalam V Hibberd M Rafter J Pettersson S 《Cellular microbiology》2008,10(5):1093-1103
Separating the large intestine from gut flora is a robust layer of epithelial cells. This barrier is armed with an array of recognizing receptors that collectively set the host innate response. Here, we use nuclear receptors (NRs) and Toll-like receptors (TLRs), suggested to act as second messengers in the communication between microorganisms and epithelial cells, as probes to assess the impact of gut flora on innate immunity in germ-free (GF) mice. Using quantitative real-time polymerase chain reaction analyses, we show that 37/49 NRs are expressed in colonic cells of GF mice. Of these, 5 can be modulated by resident flora: LXRα, RORγ and CAR show reduced expression and Nur77 and GCNF display elevated expression in conventionally raised mice compared with GF. Moreover, increased expression levels of TLR-2 and TLR-5 are observed in specific pathogen-free (SPF) mice compared with GF mice, and CAR expression is connected to the TLR-2 signalling pathway. Infections of GF or SPF mice with Yersinia pseudotuberculosis , show that GF intestinal epithelial cells fail to respond, except for CAR, which is downregulated. In contrast, SPF epithelial cells show a downregulation of all the NRs except CAR, which appears to be unaffected. Our findings indicate that gut flora contributes to the development of an intact barrier function. 相似文献
77.
Leif Rilfors Annelie Niemi Susann Haraldsson Katarina Edwards Ann-Sofie Andersson William Dowhan 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》1999,1438(2):281-294
The activity of phosphatidylserine (PS) synthase (CDP-1,2-diacyl-sn-glycerol: l-serine O-phosphatidyltransferase, EC 2.7.8.8) from Escherichia coli was studied after reconstitution with lipid vesicles of various compositions. PS synthase exhibited practically no activity in the absence of a detergent and with the substrate CDP-diacylglycerol (CDP-DAG) present only in the lipid vesicles. Inclusion of octylglucoside (OG) in the assay mixture increased the activity 20- to 1000-fold, the degree of activation depending on the lipid composition of the vesicles. Inclusion of additional CDP-DAG in the assay mixture increased the activity 5- to 25-fold. When the fraction of phosphatidylglycerol (PG) was increased from 15 to 100 mol% in the vesicles the activity increased 10-fold using the assay mixture containing OG. The highest activities were exhibited with the anionic lipids synthesized by E. coli, namely PG, diphosphatidylglycerol (DPG), and phosphatidic acid, while phosphatidylinositol gave a lower activity. Cryotransmission electron microscopy showed that transformation of the vesicles to micelles brings about an activation of the enzyme that is proportional to the degree of micellization. Thus, the activity of PS synthase is modulated by the lipid aggregate structure and by the fraction and type of anionic phospholipid in the aggregates. The increase in the activity caused by PG and DPG is physiologically relevant; it may be part of a regulatory mechanism that keeps the balance between phosphatidylethanolamine, and the sum of PG and DPG, nearly constant in wild-type E. coli cells. 相似文献
78.
79.
Key message
Simultaneous RNAi silencing of the FAD2 and FAE1 genes in the wild species Lepidium campestre improved the oil quality with 80 % oleic acid content compared to 11 % in wildtype.Abstract
Field cress (Lepidium campestre) is a wild biennial species within the Brassicaceae family with desirable agronomic traits, thus being a good candidate for domestication into a new oilseed and catch crop. However, it has agronomic traits that need to be improved before it can become an economically viable species. One of such traits is the seed oil composition, which is not desirable either for food use or for industrial applications. In this study, we have, through metabolic engineering, altered the seed oil composition in field cress into a premium oil for food processing, industrial, or chemical industrial applications. Through seed-specific RNAi silencing of the field cress fatty acid desaturase 2 (FAD2) and fatty acid elongase 1 (FAE1) genes, we have obtained transgenic lines with an oleic acid content increased from 11 % in the wildtype to over 80 %. Moreover, the oxidatively unstable linolenic acid was decreased from 40.4 to 2.6 %, and the unhealthy erucic acid was reduced from 20.3 to 0.1 %. The high oleic acid trait has been kept stable for three generations. This shows the possibility to use field cress as a platform for genetic engineering of oil compositions tailor-made for its end uses.80.
Snelling WM Chiu R Schein JE Hobbs M Abbey CA Adelson DL Aerts J Bennett GL Bosdet IE Boussaha M Brauning R Caetano AR Costa MM Crawford AM Dalrymple BP Eggen A Everts-van der Wind A Floriot S Gautier M Gill CA Green RD Holt R Jann O Jones SJ Kappes SM Keele JW de Jong PJ Larkin DM Lewin HA McEwan JC McKay S Marra MA Mathewson CA Matukumalli LK Moore SS Murdoch B Nicholas FW Osoegawa K Roy A Salih H Schibler L Schnabel RD Silveri L Skow LC Smith TP Sonstegard TS Taylor JF Tellam R 《Genome biology》2007,8(8):R165