首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   25篇
  2022年   6篇
  2021年   10篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   16篇
  2014年   19篇
  2013年   30篇
  2012年   38篇
  2011年   23篇
  2010年   21篇
  2009年   16篇
  2008年   21篇
  2007年   18篇
  2006年   26篇
  2005年   14篇
  2004年   12篇
  2003年   9篇
  2002年   12篇
  2001年   5篇
  1999年   6篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   6篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1971年   1篇
  1966年   1篇
  1963年   1篇
  1939年   1篇
排序方式: 共有396条查询结果,搜索用时 15 毫秒
21.
Cyanide-resistant respiration was studied in mitochondria isolated from the roots of bean plants ( Phaseolus vulgaris L. cv. Złota Saxa) grown hydroponically up to 16 days on a phosphate-sufficient (+P, control) or phosphate-deficient (−P) medium. Western blotting indicated that the alternative oxidase (AOX) was present only in its reduced (active) form, both in phosphate-sufficient and phosphate-deficient roots, but in the latter, the amount of AOX protein was greater. Addition of pyruvate to the isolation, washing and reaction media made mitochondria from +P roots cyanide-insensitive, similar to mitochondria from −P roots. The doubled activity of NAD-malic enzyme (NAD-ME) in −P compared with +P root mitochondria may suggest increased pyruvate production in −P mitochondria. Lower cytochrome c oxidase (COX) activity and no uncoupler effect on respiration indicated limited cytochrome chain activity in −P mitochondria. In −P mitochondria, the oxygen uptake decreased and the level of Q reduction increased from 60 to 80%. With no pyruvate present (AOX not fully activated), inhibition of the cytochrome pathway resulted in an increased level of the ratio of reduced ubiquinone (Qr) to total ubiquinone (Qt) (Qr/Qt) in +P mitochondria, but did not change Qr/Qt in −P mitochondria. When pyruvate was present, the kinetics for AOX were similar in mitochondria from −P and +P roots. It is suggested that AOX participation in −P respiration may provide an acclimation to phosphate deficiency. Stabilization of the ubiquinone reduction level by AOX might prevent the harmful effect of an increased formation of reactive oxygen species.  相似文献   
22.
Three different software packages for the probe-level analysis of high-density oligonucleotide microarray data were compared using an experiment-derived data set that was validated using real-time PCR. The efficiency with which these three programs could identify true positives in this data set was assessed. In addition, estimates of false-positive and false-negative rates were determined. The performance of the programs using very small data sets was also compared, and recommendations for use are suggested.  相似文献   
23.
24.
Hereditary spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders for which >/=14 different genetic loci have been identified. In some SCA types, expanded tri- or pentanucleotide repeats have been identified, and the length of these expansions correlates with the age at onset and with the severity of the clinical phenotype. In several other SCA types, no genetic defect has yet been identified. We describe a large, three-generation family with early-onset tremor, dyskinesia, and slowly progressive cerebellar ataxia, not associated with any of the known SCA loci, and a mutation in the fibroblast growth factor 14 (FGF14) gene on chromosome 13q34. Our observations are in accordance with the occurrence of ataxia and paroxysmal dyskinesia in Fgf14-knockout mice. As indicated by protein modeling, the amino acid change from phenylalanine to serine at position 145 is predicted to reduce the stability of the protein. The present FGF14 mutation represents a novel gene defect involved in the neurodegeneration of cerebellum and basal ganglia.  相似文献   
25.
Key role for mast cells in nonatopic asthma   总被引:7,自引:0,他引:7  
The mechanisms involved in nonatopic asthma are poorly defined. In particular, the importance of mast cells in the development of nonatopic asthma is not clear. In the mouse, pulmonary hypersensitivity reactions induced by skin sensitization with the low-m.w. compound dinitrofluorobenzene (DNFB) followed by an intra-airway application of the hapten have been featured as a model for nonatopic asthma. In present study, we used this model to examine the role of mast cells in the pathogenesis of nonatopic asthma. First, the effect of DNFB sensitization and intra-airway challenge with dinitrobenzene sulfonic acid (DNS) on mast cell activation was monitored during the early phase of the response in BALB/c mice. Second, mast cell-deficient W/W(v) and Sl/Sl(d) mice and their respective normal (+/+) littermate mice and mast cell-reconstituted W/W(v) mice (bone marrow-derived mast cells-->W/W(v)) were used. Early phase mast cell activation was found, which was maximal 30 min after DNS challenge in DNFB-sensitized BALB/c, +/+ mice but not in mast cell-deficient mice. An acute bronchoconstriction and increase in vascular permeability accompanied the early phase mast cell activation. BALB/c, +/+ and bone marrow-derived mast cell-->W/W(v) mice sensitized with DNFB and DNS-challenged exhibited tracheal hyperreactivity 24 and 48 h after the challenge when compared with vehicle-treated mice. Mucosal exudation and infiltration of neutrophils in bronchoalveolar lavage fluid associated the late phase response. Both mast cell-deficient strains failed to show any features of this hypersensitivity response. Our findings show that mast cells play a key role in the regulation of pulmonary hypersensitivity responses in this murine model for nonatopic asthma.  相似文献   
26.
Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A mechanism of UV-B-induced inhibition of photosynthesis under field conditions is proposed.  相似文献   
27.
A set of mercury resistance plasmids was obtained from wheat rhizosphere soil amended or not amended with mercuric chloride via exogenous plasmid isolation by using Pseudomonas fluorescens R2f, Pseudomonas putida UWC1, and Enterobacter cloacae BE1 as recipient strains. The isolation frequencies were highest from soil amended with high levels of mercury, and the isolation frequencies from unamended soil were low. With P. putida UWC1 as the recipient, the isolation frequency was significantly enhanced in wheat rhizosphere compared to bulk soil. Twenty transconjugants were analyzed per recipient strain. All of the transconjugants contained plasmids which were between 40 and 50 kb long. Eight selected plasmids were distributed among five groups, as shown by restriction digestion coupled with a similarity matrix analysis. However, all of the plasmids formed a tight group, as judged by hybridization with two whole-plasmid probes and comparisons with other plasmids in dot blot hybridization analyses. The results of replicon typing and broad-host-range incompatibility (Inc) group-specific PCR suggested that the plasmid isolates were not related to any previously described Inc group. Although resistance to copper, resistance to streptomycin, and/or resistance to chloramphenicol was found in several plasmids, catabolic sequences were generally not identified. One plasmid, pEC10, transferred into a variety of bacteria belonging to the β and γ subdivisions of the class Proteobacteria and mobilized as well as retromobilized the IncQ plasmid pSUP104. A PCR method for detection of pEC10-like replicons was used, in conjunction with other methods, to monitor pEC10-homologous sequences in mercury-polluted and unpolluted soils. The presence of mercury enhanced the prevalence of pEC10-like replicons in soil and rhizosphere bacterial populations.The potential use of genetically modified bacteria in agriculture has raised questions pertaining to the spread of introduced recombinant DNA through soil bacterial communities. Gene transfer in soil via conjugation has received much attention, and the focus of most studies has been the transfer and fate of introduced plasmids (6, 22, 2729, 39). Under favorable conditions, in specific soil microhabitats, or under selection conditions, both self-transmissible and mobilizable plasmids present in introduced hosts can be transferred to introduced recipients, as well as to a variety of indigenous bacteria (15, 20, 27, 28, 33). In particular, rhizospheres of crop plants, such as wheat and sugar beet, provide conditions conducive to conjugal plasmid transfer between bacterial inhabitants (15, 36). When genetically modified bacteria are developed as inoculants for the rhizosphere, insertion of heterologous DNA into non-self-transmissible plasmids or the chromosome might restrict conjugal transfer of this DNA to members of the indigenous bacterial community. However, mobilizing or retromobilizing (33) plasmids present in indigenous soil bacteria could potentially still effect the transfer of the less mobile heterologous DNA via chromosome or plasmid mobilization, which may involve cointegration (9, 19, 31). Such plasmids might thus be responsible for the escape of heterologous DNA from genetically modified bacteria introduced into soil.There is a paucity of knowledge concerning the incidence of plasmids with mobilizing capacity in soils and rhizospheres, as well as concerning the effects of soil factors, such as stresses resulting from pollution or from natural causes (e.g., rhizosphere acidity), on plasmid prevalence and transfer (e.g., reference 38). Whereas it has been suggested that chemical stress often does not enhance plasmid incidence in selected soil bacterial populations (40), pollution in river water or mines (in particular mercury pollution) has been found to exert a selective (enhancing) effect (4, 13).Plasmids of environmental bacteria have classically been obtained by endogenous isolation procedures (20). Endogenous isolation implies that putative plasmid hosts with the phenotype of interest are isolated from soil, after which plasmids are extracted from pure cultures of these strains. On the other hand, pioneering studies performed with river stone epilithon (9) and later extended to soil and sediment (32) have shown that plasmids can be obtained directly from indigenous bacterial communities in new hosts by exogenous isolation. In this approach, plasmids are captured in selectable recipient strains by using mating between these strains and the total bacterial community obtained from an environmental sample. Following incubation, the mating mixture is plated with selection for the recipient and an additional marker gene presumedly located on a plasmid present in the indigenous bacteria (6). The advantage of the exogenous isolation procedure is that no culturing step is required in the mating, which thus allows isolation of plasmids from nonculturable hosts. Furthermore, plasmids are directly selected for their transfer capacity, in addition to the presence of a specific selectable marker.In this study, exogenous plasmid isolation was employed to obtain transferable plasmids from soil bacteria by using mercury resistance as the selectable marker. The objective of this work was to gain insight into the potential present in soil bacterial populations to (retro)mobilize genes out of introduced bacteria into members of the soil bacterial community. Since the incidence of plasmids in soil bacteria is likely influenced by soil ecological factors and selection pressure, the presence of wheat roots and selection by mercury (25) were studied as experimental variables.  相似文献   
28.
Nucleotide excision repair (NER), a highly versatile DNA repair mechanism, is capable of removing various types of DNA damage including those induced by UV radiation and chemical mutagens. NER has been well characterized in yeast and mammalian systems but its presence in plants has not been reported. Here it is reported that a plant gene isolated from male germline cells of lily (Lilium longiflorum) shows a striking amino acid sequence similarity to the DNA excision repair proteins human ERCC1 and yeast RAD10. Homologous genes are also shown to be present in a number of taxonomically diverse plant genera tested, suggesting that this gene may have a conserved function in plants. The protein encoded by this gene is able to correct significantly the sensitivity to the cross-linking agent mitomycin C in ERCC1-deficient Chinese hamster ovary (CHO) cells. These findings suggest that the NER mechanism is conserved in yeast, animals and higher plants.  相似文献   
29.

Background

Although many patients prefer to stay and die at home at the end of life, many are hospitalised. Little is known about how to avoid hospitalisations for patients living at home.

Aim

To describe how hospitalisation at the end of life can be avoided, from the perspective of the GPs, nurses and family carers.

Method

A qualitative design with face-to-face interviews was used. Taking 30 cases of patients who died non-suddenly, 26 GPs, 15 nurses and 18 family carers were interviewed in depth. Of the 30 patients, 20 were hospitalised and 10 were not hospitalised in the last three months of life.

Results

Five key themes that could help avoid hospitalisation at the end of life emerged from the interviews. The key themes were: 1) marking the approach of death, and shifting the mindset; 2) being able to provide acute treatment and care at home; 3) anticipatory discussions and interventions to deal with expected severe problems; 4) guiding and monitoring the patient and family in a holistic way through the illness trajectory; 5) continuity of treatment and care at home. If these five key themes are adopted in an interrelated way, this could help avoid hospitalisations, according to GPs, nurses and family carers.

Conclusions

The five key themes described in this study can be seen as strategies that could help in avoiding hospitalisation at the end of life. It is recommended that for all patients residing at home, GPs and community nurses work together as a team from the moment that it is marked that death is approaching up to the end of life.  相似文献   
30.
During a large hospital outbreak of OXA-48 producing bacteria, most K. pneumoniae OXA-48 isolates were phenotypically resistant to meropenem or imipenem, whereas most E. coli OXA-48 isolates were phenotypically susceptible to these antibiotics. In the absence of molecular gene-detection E. coli OXA-48 could remain undetected, facilitating cross-transmission and horizontal gene transfer of bla OXA-48. Based on 868 longitudinal molecular microbiological screening results from patients carrying K. pneumoniae OXA-48 (n = 24), E. coli OXA-48 (n = 17), or both (n = 40) and mathematical modelling we determined mean durations of colonisation (278 and 225 days for K. pneumoniae OXA-48 and E. coli OXA-48, respectively), and horizontal gene transfer rates (0.0091/day from K. pneumoniae to E. coli and 0.0015/day vice versa). Based on these findings the maximum effect of horizontal gene transfer of bla OXA-48 originating from E. coli OXA-48 on the basic reproduction number (R 0) is 1.9%, and it is, therefore, unlikely that phenotypically susceptible E. coli OXA-48 will contribute significantly to the spread of bla OXA-48.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号