首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   20篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   11篇
  2014年   8篇
  2013年   10篇
  2012年   29篇
  2011年   24篇
  2010年   4篇
  2009年   14篇
  2008年   14篇
  2007年   17篇
  2006年   9篇
  2005年   7篇
  2004年   10篇
  2003年   7篇
  2002年   10篇
  2001年   5篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1995年   4篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有237条查询结果,搜索用时 31 毫秒
41.
42.
The enzymological properties of AtAurora1, a kinase responsible for the cell cycle-dependent phosphorylation of histone H3 at S10, and its cross-talk with other post-translational histone modifications, were determined. In vitro phosphorylation of H3S10 by AtAurora1 is strongly increased by K9 acetylation, and decreased by K14 acetylation and T11 phosphorylation. However, S10 phosphorylation activity is unaltered by mono-, di- or trimethylation of K9. An interference of H3K9 dimethylation by SUVR4 occurs by a pre-existing phosphorylation at S10. Hence, cross-talk in plants exists between phosphorylation of H3S10 and methylation, acetylation or phosphorylation of neighbouring amino acid residues. AtAurora1 undergoes autophosphorylation in vivo regardless of the presence of substrate, and forms dimers in planta . Of the three ATP-competitive Aurora inhibitors tested, Hesperadin was most effective in reducing the in vivo kinase activity of AtAurora1. Hesperadin consistently inhibited histone H3S10 phosphorylation during mitosis in Arabidopsis cells, but did not affect other H3 post-translational modifications, suggesting a specific inhibition of AtAurora in vivo . Inactivation of AtAurora also caused lagging chromosomes in a number of anaphase cells, but, unlike the situation in mammalian cells, Hesperadin did not influence the microtubule dynamics in dividing cells.  相似文献   
43.
A few membrane vesicle trafficking (SNARE) proteins in plants are associated with signaling and transmembrane ion transport, including control of plasma membrane ion channels. Vesicle traffic contributes to the population of ion channels at the plasma membrane. Nonetheless, it is unclear whether these SNAREs also interact directly to affect channel gating and, if so, what functional impact this might have on the plant. Here, we report that the Arabidopsis thaliana SNARE SYP121 binds to KC1, a regulatory K+ channel subunit that assembles with different inward-rectifying K+ channels to affect their activities. We demonstrate that SYP121 interacts preferentially with KC1 over other Kv-like K+ channel subunits and that KC1 interacts specifically with SYP121 but not with its closest structural and functional homolog SYP122 nor with another related SNARE SYP111. SYP121 promoted gating of the inward-rectifying K+ channel AKT1 but only when heterologously coexpressed with KC1. Mutation in any one of the three genes, SYP121, KC1, and AKT1, selectively suppressed the inward-rectifying K+ current in Arabidopsis root epidermal protoplasts as well as K+ acquisition and growth in seedlings when channel-mediated K+ uptake was limiting. That SYP121 should be important for gating of a K+ channel and its role in inorganic mineral nutrition demonstrates an unexpected role for SNARE–ion channel interactions, apparently divorced from signaling and vesicle traffic. Instead, it suggests a role in regulating K+ uptake coordinately with membrane expansion for cell growth.  相似文献   
44.
We report the first example of conopeptide oxidation performed in a biocompatible ionic liquid, 1‐ethyl‐3‐methylimidazolium acetate ([C2mim][OAc]), which enables the efficient formation of both hydrophilic and poorly water‐soluble conotoxins compared with conventional methods. Moreover, the method features a high‐concentration approach ultimately leading to higher yields at reduced separation effort. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
45.
The Kv-like (potassium voltage-dependent) K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel.Plant cells utilize the potassium ion (K+) to maintain hydrostatic (turgor) pressure, to drive irreversible cell expansion for growth, and to facilitate reversible changes in cell volume during stomatal movements. Potassium uptake and its circulation throughout the plant relies both on high-affinity, H+-coupled K+ transport (Quintero and Blatt, 1997; Rubio et al., 2008) and on K+ channels to facilitate K+ ion transfer across cell membranes. Uptake via K+ channels is thought to be responsible for roughly 50% of the total K+ content of the plant under most field conditions (Spalding et al., 1999; Rubio et al., 2008; Amtmann and Blatt, 2009). K+ channels confer on the membranes of virtually every tissue distinct K+ conductances and regulatory characteristics (Véry and Sentenac, 2003; Dreyer and Blatt, 2009). Their characteristics are thus of interest for engineering directed to manipulating K+ flux in many aspects of plant growth and cellular homeostasis. The control of K+ channel gating has been identified as the most promising target for the genetic engineering of stomatal responsiveness (Lawson and Blatt, 2014; Wang et al., 2014a), based on the recent development of quantitative systems models of guard cell transport and metabolism (Chen et al., 2012b; Hills et al., 2012; Wang et al., 2012). By contrast, modifying the expression and, most likely, the population of native K+ channels at the membrane was found to have no substantial effect on stomatal physiology (Wang et al., 2014b).The Kv-like K+ channels of the plant plasma membrane (Pilot et al., 2003; Dreyer and Blatt, 2009) share a number of structural features with the Kv superfamily of K+ channels characterized in animals and Drosophila melanogaster (Papazian et al., 1987; Pongs et al., 1988). The functional channels assemble from four homologous subunits and surround a central transmembrane pore that forms the permeation pathway (Daram et al., 1997). Each subunit comprises six transmembrane α-helices, designated S1 to S6, and both N and C termini are situated on the cytosolic side of the membrane (Uozumi et al., 1998). The pore or P loop between the S5 and S6 α-helices incorporates a short α-helical stretch and the highly conserved amino acid sequence TxGYGD, which forms a selectivity filter for K+ (Uozumi et al., 1995; Becker et al., 1996; Nakamura et al., 1997). The carbonyl oxygen atoms of these residues in all four K+ channel subunits face inward to form coordination sites for K+ ions between them (Doyle et al., 1998; Jiang et al., 2003; Kuo et al., 2003; Long et al., 2005) and a multiple-ion pore (Thiel and Blatt, 1991) such that K+ ions pass through the selectivity filter as if in free solution. The plant channels are also sensitive to a class of neurotoxins that exhibit high specificity in binding around the mouth of the channel pore (Obermeyer et al., 1994).These K+ channels also share a common gating mechanism. Within each subunit, the first four α-helices form a quasiindependent unit, the voltage sensor domain (VSD), with the S4 α-helix incorporating positively charged (Arg or Lys) residues regularly positioned across the lipid bilayer and transmembrane electric field. Voltage displaces the S4 α-helix within the membrane and couples rotation of the S5 and S6 α-helices lining the pore, thereby opening or closing the channel (Sigworth, 2003; Dreyer and Blatt, 2009). For outward-rectifying channels, such as the mammalian Kv1.2 and the D. melanogaster Shaker K+ channels, an inside-positive electric field drives the positively charged, S4 α-helix outward (the up position), which draws on the S4-S5 linker to open the pore. This simple expedient of a lever and string secures current flow in one direction by favoring opening at positive, but not negative, voltages. This same model applies to the Arabidopsis (Arabidopsis thaliana) Kv-like K+ channels, including outward rectifiers that exhibit sensitivity to external K+ concentration (Blatt, 1988; Blatt and Gradmann, 1997; Johansson et al., 2006), and it serves equally in the gating of inward-rectifying K+ channels such as KAT1, which gates open at negative voltages (Dreyer and Blatt, 2009).Studies of KAT1 gating (Latorre et al., 2003; Lai et al., 2005) have indicated that the S4 α-helix of the channel most likely undergoes very similar conformational changes with voltage as those of the mammalian and Shaker K+ channels. These findings conform with the present understanding of the evolution of VSD structure (Palovcak et al., 2014) and the view of a common functional dynamic to its molecular design. It is likely, therefore, that a similar electrostatic network occurs in KAT1 to stabilize the VSD. Crucially, however, experimental evidence in support of such a network has yet to surface. Electrostatic countercharges and the hydration of amino acid side chains between the α-helices within the VSDs of mammalian and Shaker K+ channel models are important for the latch-like stabilization of the so-called down and up states of these channels (Tao et al., 2010; Pless et al., 2011). Nonetheless, some studies (Gajdanowicz et al., 2009; Riedelsberger et al., 2010) have pointed to subtle differences in the structure of KAT1 that relate to the VSD.We have explored the electrostatic network of the KAT1 VSD through site-directed mutagenesis to manipulate the voltage dependence of KAT1, combining these studies with molecular dynamic simulations previously shown to accommodate the plant VSDs and their hydration during gating transitions (Gajdanowicz et al., 2009; Garcia-Mata et al., 2010). We report here that gating of KAT1 is sensitive to manipulations affecting a set of electrostatic charge transfer centers. These findings conform in large measure to the mammalian and Shaker models. However, virtually all manipulations affecting a highly conserved, central Phe favor the up state of the VSD and the closed KAT1 channel, whereas mutations affecting the electrostatic networks on either side of this Phe favor the down state of the VSD and the open channel. These and additional observations suggest that hydration within the VSD is a major determinant of KAT1 gating.  相似文献   
46.
Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance.Bacteria are commonly employed for the purification of municipal and industrial wastewater but until now, established water treatment technologies have not taken advantage of photosynthetic bacteria (i.e. cyanobacteria). The ability of cyanobacterial cultures to grow at high cell densities with minimal nutritional requirements (e.g. sunlight, carbon dioxide, and minerals) opens up many future avenues for sustainable water treatment applications.Water security is an urgent global issue, especially because many regions of the world are experiencing, or are predicted to experience, water shortage conditions: More than one in six people globally are water stressed, in that they do not have access to safe drinking water (United Nations, 2006). Ninety-seven percent of the Earth’s water is in the oceans; consequently, there are many efforts to develop efficient methods for converting saltwater into freshwater. Various processes using synthetic membranes, such as reverse osmosis, are successfully used for large-scale desalination. However, the high energy consumption of these technologies has limited their application predominantly to countries with both relatively limited freshwater resources and high availability of energy, for example, in the form of oil reserves.The development of an innovative, low-energy biological desalination process, using biological membranes of cyanobacteria, would thus be both attractive and pertinent. The core of the proposed biodesalination process (Fig. 1) is a low-salt biological reservoir within seawater that can serve as an ion exchanger. Its development can be separated into several complementary steps. The first step comprises the selection of a cyanobacterial strain that can be grown to high cell densities in seawater with minimal requirement for energy sources other than those that are naturally available. The environmental conditions during growth can be manipulated to enhance natural extrusion of sodium (Na+) by cyanobacteria. In the second step, cyanobacterial ion transport mechanisms must be manipulated to generate cells in which sodium export is replaced with intracellular sodium accumulation. This will involve inhibition of endogenous Na+ export and expression of synthetic molecular units that facilitate light-driven sodium flux into the cells. A robust control system built from biological switches will be required to achieve precisely timed expression of the salt-accumulating molecular units. The third step consists of engineering efficient separation of the cyanobacterial cells from the desalinated water, using knowledge of physicochemical properties of the cell surface and their natural ability to produce extracellular polymeric substances (EPSs), which aid cell separation while preserving cell integrity. The fourth step integrates the first three steps into a manageable and scalable engineering process. The fifth and final step assesses potential risks and public acceptance issues linked to the new technology.Open in a separate windowFigure 1.Proposed usage of cyanobacterial cultures for water treatment. A, Hypothetical water treatment station. Situated in basins next to the water source, sun-powered cell cultures remove unwanted elements from the water. The clean water is separated from the cells for human uses. The produced biomass is available for other industries. The proposed biodesalination process is based on the following steps. B, Photoautotrophic cells divide to generate high-density cultures. C, The combined cell volume is low in salt as a result of transport proteins in the cell membrane that export sodium using photosynthetically generated energy. D, Through environmental and genetic manipulation, salt export is inhibited and replaced with transport modules that accumulate salt inside the cells. This process is again fueled by light energy. E, Manipulation of cell surface properties separates the salt-enriched cells from the desalinated water.In this review, we outline the state of knowledge and available technology for each of the steps, as well as summarize the current knowledge gaps and technical limitations in employing a large-scale water treatment process using cyanobacteria. Before discussing these issues, we provide some background information on the usage of cyanobacteria in biotechnology and the impact of sodium on cellular functions of cyanobacteria. The example of biodesalination provides a good vehicle to discuss the suitability of photosynthetic bacteria for water treatment more generally. The issues addressed in this review are relevant for a wide range of biotechnological applications of cyanobacteria, including bioremediation and biodegradation as well as the generation of biofuels, natural medicines, or cosmetics.  相似文献   
47.
Although fibroblasts play an essential part during the wound healing response, the mechanisms by which they mediate tissue remodelling and contraction are still unclear. Using live cell and matrix imaging within 3D free-floating fibroblast-populated collagen lattices as a model for tissue contraction, we compared the behaviour of a range of fibroblasts with low and high contraction abilities and analysed the effect of the broad spectrum MMP-inhibitor GM6001 on cell behaviour and matrix contraction. We identified two mechanisms underlying matrix contraction, one via direct cell-mediated contractile activity, the second through matrix degradation. These appear to be linked to cell morphology and regulated by the collagen concentration within the matrix. Cells with a rounded morphology proliferated in the matrix but did not remodel it efficiently, resulting in a poor ability to contract matrices. Cells with an elongated morphology showed higher levels of protrusive activity, leading to efficient matrix remodelling and contraction. GM6001 inhibited week-long matrix contraction to various extents with the different cell lines. However, quantitative analysis of the cell protrusive activity showed that GM6001 consistently decreased cell dynamics in 3D by about 20%, and this was correlated with a significant reduction in early matrix contraction. Overall our results suggest that although fibroblast-mediated matrix contraction depends on both cell dynamics and MMP-mediated matrix degradation, the efficiency of GM6001 treatment in preventing contraction might be linked to a direct effect on cell dynamics.  相似文献   
48.
49.
Phytase improves as a feed supplement the nutritional quality of phytate-rich diets (e.g., cereal grains, legumes, and oilseeds) by hydrolyzing indigestible phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and increasing abdominal absorption of inorganic phosphates, minerals, and trace elements. Directed phytase evolution was reported for improving industrial relevant properties such as thermostability (pelleting process) or activity. In this study, we report the cloning, characterization, and directed evolution of the Yersinia mollaretii phytase (Ymphytase). Ymphytase has a tetrameric structure with positive cooperativity (Hill coefficient was 2.3) and a specific activity of 1,073?U/mg which is ~10 times higher than widely used fungal phytases. High-throughput prescreening methods using filter papers or 384-well microtiter plates were developed. Precise subsequent screening for thermostable and active phytase variants was performed by combining absorbance and fluorescence-based detection system in 96-well microtiter plates. Directed evolution yielded after mutant library generation (SeSaM method) and two-step screening (in total ~8,400 clones) a phytase variant with ~20% improved thermostability (58°C for 20?min; residual activity wild type ~34%; variant ~53%) and increased melting temperature (1.5°C) with a slight loss of specific activity (993?U/mg).  相似文献   
50.
Reducing the burden of pathogenic mutans streptococci is a goal of oral health. Lactobacillus paracasei DSMZ16671, even after heat-killing, specifically co-aggregates mutans streptococci in vitro and retains this activity in human saliva. In rats, it reduces mutans streptococcal colonization of teeth and caries scores. This pilot study sought to assess the potential of heat-killed L. paracasei DSMZ16671 (pro-t-action®) to reduce levels of salivary mutans streptococci in humans, using sugar-free candies as a delivery vehicle. A randomized, placebo-controlled, double-blind in vivo study of three groups examined the short-term effect of sugar-free candies containing 0 (placebo), 1, or 2 mg/candy piece of heat-killed L. paracasei DSMZ16671 on the levels of salivary mutans streptococci determined before and after consumption of the candies. The candies were consumed 4 times during 1.5 consecutive days. Compared to the placebo group, the test groups’ saliva had significantly reduced mutans streptococci as an immediate effect. These results suggest the use of heat-killed L. paracasei DSMZ16671 in suckable candies as a method to reduce mutans streptococci in the mouth and, thereby, caries risk. We think this a new concept and strategy for caries prevention and management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号