首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   99篇
  2022年   8篇
  2021年   13篇
  2019年   10篇
  2018年   15篇
  2017年   7篇
  2016年   23篇
  2015年   35篇
  2014年   30篇
  2013年   39篇
  2012年   85篇
  2011年   74篇
  2010年   26篇
  2009年   40篇
  2008年   50篇
  2007年   41篇
  2006年   42篇
  2005年   39篇
  2004年   46篇
  2003年   26篇
  2002年   35篇
  2001年   36篇
  2000年   21篇
  1999年   29篇
  1998年   8篇
  1995年   9篇
  1994年   10篇
  1992年   11篇
  1991年   8篇
  1990年   15篇
  1989年   14篇
  1988年   28篇
  1987年   8篇
  1986年   12篇
  1985年   11篇
  1984年   12篇
  1983年   12篇
  1981年   10篇
  1980年   8篇
  1979年   18篇
  1978年   15篇
  1977年   11篇
  1976年   8篇
  1975年   9篇
  1974年   12篇
  1973年   12篇
  1972年   13篇
  1971年   8篇
  1970年   16篇
  1969年   8篇
  1965年   7篇
排序方式: 共有1128条查询结果,搜索用时 15 毫秒
981.
Stereospecificity in protein-protein recognition and docking is an unchallenged dogma. Soluble proteins provide the main source of evidence for stereospecificity. In contrast, within the membrane little is known about the role of stereospecificity in the recognition process. Here, we have reassessed the stereospecificity of protein-protein recognition by testing whether it holds true for the well-defined glycophorin A (GPA) transmembrane domain in vivo. We found that the all-D amino acid GPA transmembrane domain and two all-D mutants specifically associated with an all-L GPA transmembrane domain, within the membrane milieu of Escherichia coli. Molecular dynamics techniques reveal a possible structural explanation to the observed interaction between all-D and all-L transmembrane domains. A very strong correlation was found between amino acid residues at the interface of both the all-L homodimer structure and the mixed L/D heterodimer structure, suggesting that the original interactions are conserved. The results suggest that GPA helix-helix recognition within the membrane is chirality-independent.  相似文献   
982.
Under captive conditions common marmosets (Callithrix jacchus) show socially monogamous propensities. Male and female form a social bond as characterized by signs of behavioral arousal during separation of the pairmates, high levels of affiliative interactions between pairmates and agonistic responses towards strange conspecifics. In the present study behavioral and cardiophysiological responses of mated individuals of common marmosets were recorded while the animals were in an unfamiliar environment (1) alone, (2) with the pairmate, or (3) with an opposite-sexed stranger. Pairmates of 6 established pairs were tested in 3 replicates yielding a total of 36 trials per experiment. A trial was divided into three 10-min segments (baseline; unfamiliar environment; reunion). Behavioral responses were videotaped with a remote controlled camera system installed within the cage. Systolic (SBP) and diastolic blood pressure (DBP), and heart rate (HR) as well as locomotor activity (ACT) were recorded telemtrically through peritoneally implanted transmitters. The individuals’ responses measured while in an unfamiliar environment was only reduced by the pairmate, but not by an opposite-sexed stranger. No affiliative behaviors occurred between strange conspecifics, whereas aggressive and sexual behaviors were observed. During reunion with the pairmate individuals recovered physiologically. The present study shows that an individualized pair bond exists between pairmates of common marmosets. Further, it becomes evident that establishing a social bond with the pairmate is important for maintaining physiological homeostasis.  相似文献   
983.
984.
985.
Gerber J  Lill R 《Mitochondrion》2002,2(1-2):71-86
Iron-sulfur (Fe-S) clusters are ubiquitous co-factors of proteins that play an important role in metabolism, electron-transfer and regulation of gene expression. In eukaryotes mitochondria are the primary site of Fe-S cluster biogenesis. The organelles contain some ten proteins of the so-called iron-sulfur cluster (ISC) assembly machinery that is well-conserved in bacteria and eukaryotes. The ISC assembly machinery is responsible for biogenesis of Fe-S proteins within mitochondria. In addition, this machinery is involved in the maturation of extra-mitochondrial Fe-S proteins by cooperating with mitochondrial proteins with an exclusive function in this process. This review summarizes recent developments in our understanding of the biogenesis of cellular Fe-S proteins in eukaryotes. Particular emphasis is given to disorders in Fe-S protein biogenesis causing human disease.  相似文献   
986.
987.
Depletion of the mitochondrial matrix protein frataxin is the molecular cause of the neurodegenerative disease Friedreich ataxia. The function of frataxin is unclear, although recent studies have suggested a function of frataxin (yeast Yfh1) in iron/sulphur (Fe/S) protein biogenesis. Here, we show that Yfh1 specifically binds to the central Fe/S-cluster (ISC)-assembly complex, which is composed of the scaffold protein Isu1 and the cysteine desulphurase Nfs1. Association between Yfh1 and Isu1/Nfs1 was markedly increased by ferrous iron, but did not depend on ISCs on Isu1. Functional analyses in vivo showed an involvement of Yfh1 in de novo ISC synthesis on Isu1. Our data demonstrate a crucial function of Yfh1 in Fe/S protein biogenesis by defining its function in an early step of this essential process. The iron-dependent binding of Yfh1 to Isu1/Nfs1 suggests a role of frataxin/Yfh1 in iron loading of the Isu scaffold proteins.  相似文献   
988.
The biology of VEGF and its receptors   总被引:139,自引:0,他引:139  
Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF has also been implicated in pathological angiogenesis associated with tumors, intraocular neovascular disorders and other conditions. The biological effects of VEGF are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which differ considerably in signaling properties. Non-signaling co-receptors also modulate VEGF RTK signaling. Currently, several VEGF inhibitors are undergoing clinical testing in several malignancies. VEGF inhibition is also being tested as a strategy for the prevention of angiogenesis, vascular leakage and visual loss in age-related macular degeneration.  相似文献   
989.
The mitochondrial proteins Isu1p and Isu2p play an essential role in the maturation of cellular iron-sulfur (Fe/S) proteins in eukaryotes. By radiolabelling of yeast cells with 55Fe we demonstrate that Isu1p binds an oxygen-resistant non-chelatable Fe/S cluster providing in vivo evidence for a scaffolding function of Isu1p during Fe/S cluster assembly. Depletion of the cysteine desulfurase Nfs1p, the ferredoxin Yah1p or the yeast frataxin homologue Yfh1p by regulated gene expression causes a strong decrease in the de novo synthesis of Fe/S clusters on Isu1p. In contrast, depletion of the Hsp70 chaperone Ssq1p, its co-chaperone Jac1p or the glutaredoxin Grx5p markedly increased the amount of Fe/S clusters bound to Isu1p, even though these mitochondrial proteins are crucial for maturation of Fe/S proteins. Hence Ssq1p/Jac1p and Grx5p are required in a step after Fe/S cluster synthesis on Isu1p, for instance in dissociation of preassembled Fe/S clusters from Isu1p and/or their insertion into apoproteins. We propose a model that dissects Fe/S cluster biogenesis into two major steps and assigns its central components to one of these two steps.  相似文献   
990.
Bone morphogenetic proteins (BMPs) and transforming growth factor-beta (TGFbeta) are potent regulators of osteoblast differentiation and proliferation, processes that are crucial in bone remodeling. BMPs and TGFbeta act in concert with other local factors and hormones, among them 1,25(OH)2-vitamin D3 and insulin. Here we show that BMP7 inhibits 1,25(OH)2-vitamin D3-induced differentiation of human osteoblasts, whereas TGFbeta1 stimulates it, as assessed by assays for alkaline phosphatase (ALP) induction, matrix mineralization, and morphology changes. BMP7 or TGFbeta1 alone affects the differentiation of human osteoblasts. Similar results were obtained in assays for ALP induction using conditionally immortalized human osteoblasts (hFOB) and primary osteoblasts obtained from trabecular bone of the femoral head after hip replacement surgery. BMP7 stimulation led to a decrease of 1,25(OH)2-vitamin D3-induced binding of nuclear proteins to a vitamin D response element, as shown by electrophoretic mobility shift assay. Our results suggest that 1,25(OH)2-vitamin D3 modulates in opposite ways the effects of BMP7 and TGFbeta1 on osteoblast differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号