首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   22篇
  2023年   1篇
  2022年   8篇
  2021年   6篇
  2020年   1篇
  2019年   5篇
  2018年   6篇
  2017年   4篇
  2016年   7篇
  2015年   13篇
  2014年   28篇
  2013年   31篇
  2012年   36篇
  2011年   43篇
  2010年   19篇
  2009年   13篇
  2008年   29篇
  2007年   30篇
  2006年   31篇
  2005年   23篇
  2004年   18篇
  2003年   16篇
  2002年   16篇
  2000年   1篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1994年   2篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
61.
This study seeks to understand children''s perceptions of their present and future environments in the highly biodiverse and rapidly changing landscapes of Kalimantan, Indonesian Borneo. We analyzed drawings by children (target age 10–15 years) from 22 villages, which show how children perceive the present conditions of forests and wildlife surrounding their villages and how they expect conditions to change over the next 15 years. Analyses of picture elements and their relationships to current landscape variables indicate that children have a sophisticated understanding of their environment and how different environmental factors interact, either positively or negatively. Children appear to have landscape-dependent environmental perceptions, showing awareness of past environmental conditions and many aspects of recent trends, and translating these into predictions for future environmental conditions. The further removed their present landscape is from the originally forested one, the more environmental change they expect in the future, particularly declines in forest cover, rivers, animal diversity and increases in temperature and natural disasters. This suggests that loss of past perceptions and associated “shifting environmental baselines” do not feature strongly among children on Borneo, at least not for the perceptions we investigated here. Our findings that children have negative expectations of their future environmental conditions have important political implications. More than other generations, children have a stake in ensuring that future environmental conditions support their long-term well-being. Understanding what drives environmental views among children, and how they consider trade-offs between economic development and social and environmental change, should inform optimal policies on land use. Our study illuminates part of the complex interplay between perceptions of land cover and land use change. Capturing the views of children through artistic expressions provides a potentially powerful tool to influence public and political opinions, as well as a valuable approach for developing localized education and nature conservation programs.  相似文献   
62.
A family of bis-[4′-Azido-2,2′:6′,2″-terpyridine platinum(II)] complexes with linear linkers of varying length have been synthesized. They have been designed to bis-intercalate into two DNA duplexes in close proximity, the azido groups allowing the sites of intercalation to be photoaffinity labeled. The linker to Pt(II) bonds are susceptible to cleavage by thiols and cyanide ion, which is a requirement for the intended method of analysis by 2D gel electrophoresis.  相似文献   
63.
64.
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.  相似文献   
65.
66.
67.

Background

Cancer cells present a sustained de novo fatty acid synthesis with an increase of saturated and monounsaturated fatty acid (MUFA) production. This change in fatty acid metabolism is associated with overexpression of stearoyl-CoA desaturase 1 (Scd1), which catalyses the transformation of saturated fatty acids into monounsaturated fatty acids (e.g., oleic acid). Several reports demonstrated that inhibition of Scd1 led to the blocking of proliferation and induction of apoptosis in cancer cells. Nevertheless, mechanisms of cell death activation remain to be better understood.

Principal Findings

In this study, we demonstrated that Scd1 extinction by siRNA triggered abolition of de novo MUFA synthesis in cancer and non-cancer cells. Scd1 inhibition-activated cell death was only observed in cancer cells with induction of caspase 3 activity and PARP-cleavage. Exogenous supplementation with oleic acid did not reverse the Scd1 ablation-mediated cell death. In addition, Scd1 depletion induced unfolded protein response (UPR) hallmarks such as Xbp1 mRNA splicing, phosphorylation of eIF2α and increase of CHOP expression. However, the chaperone GRP78 expression, another UPR hallmark, was not affected by Scd1 knockdown in these cancer cells indicating a peculiar UPR activation. Finally, we showed that CHOP induction participated to cell death activation by Scd1 extinction. Indeed, overexpression of dominant negative CHOP construct and extinction of CHOP partially restored viability in Scd1-depleted cancer cells.

Conclusion

These results suggest that inhibition of de novo MUFA synthesis by Scd1 extinction could be a promising anti-cancer target by inducing cell death through UPR and CHOP activation.  相似文献   
68.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.  相似文献   
69.
Insulin-like Growth Factor-1 (IGF-1) plays a key role in breast cancer development and cell cycle regulation. It has been demonstrated that IGF-1 stimulates cyclin expression, thus regulating the G1 to S phase transition of the cell cycle. Potassium (K+) channels are involved in the G1 phase progression of the cell cycle induced by growth factors. However, mechanisms that allow growth factors to cooperate with K+ channels in order to modulate the G1 phase progression and cyclin expression remain unknown. Here, we focused on hEag1 K+ channels which are over-expressed in breast cancer and are involved in the G1 phase progression of breast cancer cells (MCF-7). As expected, IGF-1 increased cyclin D1 and E expression of MCF-7 cells in a cyclic manner, whereas the increase of CDK4 and 2 levels was sustained. IGF-1 stimulated p21WAF1/Cip1 expression with a kinetic similar to that of cyclin D1, however p27Kip1 expression was insensitive to IGF-1. Interestingly, astemizole, a blocker of hEag1 channels, but not E4031, a blocker of HERG channels, inhibited the expression of both cyclins after 6-8 h of co-stimulation with IGF-1. However, astemizole failed to modulate CDK4, CDK2, p21WAF1/Cip1 and p27Kip1 expression. The down-regulation of hEag1 by siRNA provoked a decrease in cyclin expression. This study is the first to demonstrate that K+ channels such as hEag1 are directly involved in the IGF-1-induced up-regulation of cyclin D1 and E expression in MCF-7 cells. By identifying more specifically the temporal position of the arrest site induced by the inhibition of hEag1 channels, we confirmed that hEag1 activity is predominantly upstream of the arrest site induced by serum-deprivation, prior to the up-regulation of both cyclins D1 and E.  相似文献   
70.
Neuromuscular synapse formation depends upon coordinated interactions between motor neurons and muscle fibers, leading to the formation of a highly specialized postsynaptic membrane and a highly differentiated nerve terminal. Synapse formation begins as motor axons approach muscles that are prepatterned in the prospective synaptic region in a manner that depends upon Lrp4, a member of the LDL receptor family, and muscle-specific kinase (MuSK), a receptor tyrosine kinase. Motor axons supply Agrin, which binds Lrp4 and stimulates further MuSK phosphorylation, stabilizing nascent synapses. How Agrin binds Lrp4 and stimulates MuSK kinase activity is poorly understood. Here, we demonstrate that Agrin binds to the N-terminal region of Lrp4, including a subset of the LDLa repeats and the first of four β-propeller domains, which promotes association between Lrp4 and MuSK and stimulates MuSK kinase activity. In addition, we show that Agrin stimulates the formation of a functional complex between Lrp4 and MuSK on the surface of myotubes in the absence of the transmembrane and intracellular domains of Lrp4. Further, we demonstrate that the first Ig-like domain in MuSK, which shares homology with the NGF-binding region in Tropomyosin Receptor Kinase (TrKA), is required for MuSK to bind Lrp4. These findings suggest that Lrp4 is a cis-acting ligand for MuSK, whereas Agrin functions as an allosteric and paracrine regulator to promote association between Lrp4 and MuSK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号