全文获取类型
收费全文 | 377篇 |
免费 | 22篇 |
专业分类
399篇 |
出版年
2023年 | 2篇 |
2022年 | 8篇 |
2021年 | 6篇 |
2020年 | 1篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 4篇 |
2016年 | 7篇 |
2015年 | 13篇 |
2014年 | 28篇 |
2013年 | 31篇 |
2012年 | 36篇 |
2011年 | 43篇 |
2010年 | 19篇 |
2009年 | 13篇 |
2008年 | 29篇 |
2007年 | 30篇 |
2006年 | 31篇 |
2005年 | 23篇 |
2004年 | 18篇 |
2003年 | 16篇 |
2002年 | 16篇 |
2000年 | 1篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1994年 | 2篇 |
排序方式: 共有399条查询结果,搜索用时 31 毫秒
1.
2.
3.
The spatial and temporal dynamics of microbial community structure and function were surveyed in duplicated woodchip-biofilters operated under constant conditions for 231 days. The contaminated gaseous stream for treatment was representative of composting emissions, included ammonia, dimethyl disulfide and a mixture of five oxygenated volatile organic compounds. The community structure and diversity were investigated by denaturing gradient gel electrophoresis on 16S rRNA gene fragments. During the first 42 days, microbial acclimatization revealed the influence of operating conditions and contaminant loading on the biofiltration community structure and diversity, as well as the limited impact of inoculum compared to the greater persistence of the endogenous woodchip community. During long-term operation, a high and stable removal efficiency was maintained despite a highly dynamic microbial community, suggesting the probable functional redundancy of the community. Most of the contaminant removal occurred in the first compartment, near the gas inlet, where the microbial diversity was the highest. The stratification of the microbial structures along the filter bed was statistically correlated to the longitudinal distribution of environmental conditions (selective pressure imposed by contaminant concentrations) and function (contaminant elimination capacity), highlighting the central role of the bacterial community. The reproducibility of microbial succession in replicates suggests that the community changes were presumably driven by a deterministic process. 相似文献
4.
Anne-Sophie Delmarcelle Mylah Villacorte Anne-Christine Hick Christophe E. Pierreux 《Journal of visualized experiments : JoVE》2014,(88)
The thyroid is a bilobated endocrine gland localized at the base of the neck, producing the thyroid hormones T3, T4, and calcitonin. T3 and T4 are produced by differentiated thyrocytes, organized in closed spheres called follicles, while calcitonin is synthesized by C-cells, interspersed in between the follicles and a dense network of blood capillaries. Although adult thyroid architecture and functions have been extensively described and studied, the formation of the “angio-follicular” units, the distribution of C-cells in the parenchyma and the paracrine communications between epithelial and endothelial cells is far from being understood.This method describes the sequential steps of mouse embryonic thyroid anlagen dissection and its culture on semiporous filters or on microscopy plastic slides. Within a period of four days, this culture system faithfully recapitulates in vivo thyroid development. Indeed, (i) bilobation of the organ occurs (for e12.5 explants), (ii) thyrocytes precursors organize into follicles and polarize, (iii) thyrocytes and C-cells differentiate, and (iv) endothelial cells present in the microdissected tissue proliferate, migrate into the thyroid lobes, and closely associate with the epithelial cells, as they do in vivo.Thyroid tissues can be obtained from wild type, knockout or fluorescent transgenic embryos. Moreover, explants culture can be manipulated by addition of inhibitors, blocking antibodies, growth factors, or even cells or conditioned medium. Ex vivo development can be analyzed in real-time, or at any time of the culture by immunostaining and RT-qPCR.In conclusion, thyroid explant culture combined with downstream whole-mount or on sections imaging and gene expression profiling provides a powerful system for manipulating and studying morphogenetic and differentiation events of thyroid organogenesis. 相似文献
5.
Anne-Sophie Mathieu Stanley Lutts Bertrand Vandoorne Christophe Descamps Claire Périlleux Vincent Dielen Jean-Claude Van Herck Muriel Quinet 《Journal of plant physiology》2014
An increase in mean and extreme summer temperatures is expected as a consequence of climate changes and this might have an impact on plant development in numerous species. Root chicory (Cichorium intybus L.) is a major crop in northern Europe, and it is cultivated as a source of inulin. This polysaccharide is stored in the tap root during the first growing season when the plant grows as a leafy rosette, whereas bolting and flowering occur in the second year after winter vernalisation. The impact of heat stress on plant phenology, water status, photosynthesis-related parameters, and inulin content was studied in the field and under controlled phytotron conditions. In the field, plants of the Crescendo cultivar were cultivated under a closed plastic-panelled greenhouse to investigate heat-stress conditions, while the control plants were shielded with a similar, but open, structure. In the phytotrons, the Crescendo and Fredonia cultivars were exposed to high temperatures (35 °C day/28 °C night) and compared to control conditions (17 °C) over 10 weeks. In the field, heat reduced the root weight, the inulin content of the root and its degree of polymerisation in non-bolting plants. Flowering was observed in 12% of the heat stressed plants during the first growing season in the field. In the phytotron, the heat stress increased the total number of leaves per plant, but reduced the mean leaf area. Photosynthesis efficiency was increased in these plants, whereas osmotic potential was decreased. High temperature was also found to induced flowering of up to 50% of these plants, especially for the Fredonia cultivar. In conclusion, high temperatures induced a reduction in the growth of root chicory, although photosynthesis is not affected. Flowering was also induced, which indicates that high temperatures can partly substitute for the vernalisation requirement for the flowering of root chicory. 相似文献
6.
7.
Anne-Sophie Riteau Mikael Tassin Guillemette Chambon Claudine Le Vaillant Jocelyne de Laveaucoupet Marie-Pierre Quéré Madeleine Joubert Sophie Prevot Henri-Jean Philippe Alexandra Benachi 《PloS one》2014,9(4)
Purpose
To evaluate the accuracy of ultrasonography and magnetic resonance imaging (MRI) in the diagnosis of placenta accreta and to define the most relevant specific ultrasound and MRI features that may predict placental invasion.Material and Methods
This study was approved by the institutional review board of the French College of Obstetricians and Gynecologists. We retrospectively reviewed the medical records of all patients referred for suspected placenta accreta to two university hospitals from 01/2001 to 05/2012. Our study population included 42 pregnant women who had been investigated by both ultrasonography and MRI. Ultrasound images and MRI were blindly reassessed for each case by 2 raters in order to score features that predict abnormal placental invasion.Results
Sensitivity in the diagnosis of placenta accreta was 100% with ultrasound and 76.9% for MRI (P = 0.03). Specificity was 37.5% with ultrasonography and 50% for MRI (P = 0.6). The features of greatest sensitivity on ultrasonography were intraplacental lacunae and loss of the normal retroplacental clear space. Increased vascularization in the uterine serosa-bladder wall interface and vascularization perpendicular to the uterine wall had the best positive predictive value (92%). At MRI, uterine bulging had the best positive predictive value (85%) and its combination with the presence of dark intraplacental bands on T2-weighted images improved the predictive value to 90%.Conclusion
Ultrasound imaging is the mainstay of screening for placenta accreta. MRI appears to be complementary to ultrasonography, especially when there are few ultrasound signs. 相似文献8.
Anne-Christine Hick Anne-Sophie Delmarcelle Mahé Bouquet Sabrina Klotz Tamara Copetti Celine Forez Patrick Van Der Smissen Pierre Sonveaux Jean-François Collet Olivier Feron Pierre J. Courtoy Christophe E. Pierreux 《Developmental biology》2013
The thyroid is a highly vascularized endocrine gland, displaying a characteristic epithelial organization in closed spheres, called follicles. Here we investigate how endothelial cells are recruited into the developing thyroid and if they control glandular organization as well as thyrocytes and C-cells differentiation. We show that endothelial cells closely surround, and then invade the expanding thyroid epithelial cell mass to become closely associated with nascent polarized follicles. This close and sustained endothelial:epithelial interaction depends on epithelial production of the angiogenic factor, Vascular Endothelial Growth Factor-A (VEGF-A), as its thyroid-specific genetic inactivation reduced the endothelial cell pool of the thyroid by >90%. Vegfa KO also displayed decreased C-cells differentiation and impaired organization of the epithelial cell mass into follicles. We developed an ex vivo model of thyroid explants that faithfully mimicks bilobation of the thyroid anlagen, endothelial and C-cells invasion, folliculogenesis and differentiation. Treatment of thyroid explants at e12.5 with a VEGFR2 inhibitor ablated the endothelial pool and reproduced ex vivo folliculogenesis defects observed in conditional Vegfa KO. In the absence of any blood supply, rescue by embryonic endothelial progenitor cells restored folliculogenesis, accelerated lumen expansion and stimulated calcitonin expression by C-cells. In conclusion, our data demonstrate that, in developing mouse thyroid, epithelial production of VEGF-A is necessary for endothelial cells recruitment and expansion. In turn, endothelial cells control epithelial reorganization in follicles and C-cells differentiation. 相似文献
9.
10.
Ghars MA Richard L Lefebvre-De Vos D Leprince AS Parre E Bordenave M Abdelly C Savouré A 《Plant & cell physiology》2012,53(1):183-192
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently. 相似文献