首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   457篇
  免费   31篇
  488篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   13篇
  2015年   6篇
  2014年   18篇
  2013年   20篇
  2012年   18篇
  2011年   15篇
  2010年   9篇
  2009年   10篇
  2008年   21篇
  2007年   23篇
  2006年   32篇
  2005年   23篇
  2004年   20篇
  2003年   12篇
  2002年   25篇
  2001年   21篇
  2000年   24篇
  1999年   10篇
  1998年   10篇
  1997年   9篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   7篇
  1988年   9篇
  1987年   4篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1983年   4篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1946年   1篇
  1935年   1篇
排序方式: 共有488条查询结果,搜索用时 0 毫秒
91.
During leaf senescence, resources are recycled by redistribution to younger leaves and reproductive organs. Candidate pathways for the regulation of onset and progression of leaf senescence include ubiquitin‐dependent turnover of key proteins. Here, we identified a novel plant U‐box E3 ubiquitin ligase that prevents premature senescence in Arabidopsis plants, and named it SENESCENCE‐ASSOCIATED E3 UBIQUITIN LIGASE 1 (SAUL1). Using in vitro ubiquitination assays, we show that SAUL1 has E3 ubiquitin ligase activity. We isolated two alleles of saul1 mutants that show premature senescence under low light conditions. The visible yellowing of leaves is accompanied by reduced chlorophyll content, decreased photochemical efficiency of photosystem II and increased expression of senescence genes. In addition, saul1 mutants exhibit enhanced abscisic acid (ABA) biosynthesis. We show that application of ABA to Arabidopsis is sufficient to trigger leaf senescence, and that this response is abolished in the ABA‐insensitive mutants abi1‐1 and abi2‐1, but enhanced in the ABA‐hypersensitive mutant era1‐3. We found that increased ABA levels coincide with enhanced activity of Arabidopsis aldehyde oxidase 3 (AAO3) and accumulation of AAO3 protein in saul1 mutants. Using label transfer experiments, we showed that interactions between SAUL1 and AAO3 occur. This suggests that SAUL1 participates in targeting AAO3 for ubiquitin‐dependent degradation via the 26S proteasome to prevent premature senescence.  相似文献   
92.
Pneumococcal lipoteichoic acid (LTA) is known to have a completely different chemical structure compared with that of Staphylococcus aureus: the polyglycerophosphate in the backbone is replaced in the pneumococcal LTA by a pentamer repeating unit consisting of one ribitol and a tetrasaccharide carrying the unusual substituents phosphocholine and N-acetyl-D-galactosamine. Neither D-alanine nor N-acetyl-D-glucosamine, which play central roles in the biological activity of the staphylococcal LTA, has been reported. The extraction using butanol is more gentle compared with the previously reported chloroform-methanol extraction and results in a higher yield of LTA. We characterized the LTA of two different strains of Streptococcus pneumoniae:R6 (serotype 2) and Fp23 (serotype 4). NMR analysis confirmed the structure of LTA from R6 but showed that its ribitol carries an N-acetyl-D-galactosamine substituent. The NMR data for the LTA from Fp23 indicate that this LTA additionally contains ribitol-bound D-alanine. Dose-response curves of the two pneumococcal LTAs in human whole blood revealed that LTA from Fp23 was significantly more potent than LTA from R6 with regard to the induction of all cytokines measured (tumor necrosis factor, interleukin-1 (IL-1), IL-8, IL-10, granulocyte colony-stimulating factor, and interferon gamma). However, other characteristics, such as lack of inhibition by endotoxin-specific LAL-F, Toll-like receptor 2 and not 4 dependence, and lack of stimulation of neutrophilic granulocytes, were shared by both LTAs. This is the first report of a difference in the structure of LTA between two pneumococcal serotypes resulting in different immunostimulatory potencies.  相似文献   
93.
In contrast to the role of lipopolysaccharide from Gram-negative bacteria, the role of Gram-positive bacterial components in inducing inflammation in the CNS remains controversial. We studied the potency of highly purified lipoteichoic acid and muramyl dipeptide isolated from Staphylococcus aureus to activate primary cultures of rat microglia. Exposure of pure microglial cultures to lipoteichoic acid triggered a significant time- and dose-dependent production of pro-inflammatory cytokines (tumour-necrosis factor-alpha, interleukin-1beta, interleukin-6) and nitric oxide. Muramyl dipeptide strongly and selectively potentiated lipoteichoic acid-induced inducible nitric oxide synthase expression and nitric oxide production. However, it did not have any significant influence on the production of pro-inflammatory cytokines. As bacterial components are recognised by the innate immunity through Toll-like receptors (TLRs) we showed that lipoteichoic acid was recognised in microglia by the TLR2 and lipopolysaccharide by the TLR4, as cells isolated from mice lacking TLR2 or TLR4 did not produce pro-inflammatory cytokines and nitric oxide upon lipoteichoic acid or lipopolysaccharide stimulation, respectively. Lipoteichoic acid-induced glia activation was mediated by p38 and ERK1/2 MAP kinases, as pretreatment with inhibitor of p38 or ERK1/2 decreased lipoteichoic acid-induced cytokine release, iNOS mRNA expression and nitric oxide production. The observed pro-inflammatory response induced by lipoteichoic acid-activated microglia could play a major role in the inflammatory response of CNS induced by Gram-positive bacteria.  相似文献   
94.
Microbial motility frequently depends on flagella or type?IV pili. Using recently developed archaeal genetic tools, archaeal flagella and its assembly machinery have been identified. Archaeal flagella are functionally similar to bacterial flagella and their assembly systems are homologous with type?IV pili assembly systems of Gram-negative bacteria. Therefore elucidating their biochemistry may result in insights in both archaea and bacteria. FlaI, a critical cytoplasmic component of the archaeal flagella assembly system in Sulfolobus acidocaldarius, is a member of the type?II/IV secretion system ATPase superfamily, and is proposed to be bi-functional in driving flagella assembly and movement. In the present study we show that purified FlaI is a Mn2+-dependent ATPase that binds MANT-ATP [2'-/3'-O-(N'- methylanthraniloyl)adenosine-5'-O-triphosphate] with a high affinity and hydrolyses ATP in a co-operative manner. FlaI has an optimum pH and temperature of 6.5 and 75?°C for ATP hydrolysis. Remarkably, archaeal, but not bacterial, lipids stimulated the ATPase activity of FlaI 3-4-fold. Analytical gel filtration indicated that FlaI undergoes nucleotide-dependent oligomerization. Furthermore, SAXS (small-angle X-ray scattering) analysis revealed an ATP-dependent hexamerization of FlaI in solution. The results of the present study report the first detailed biochemical analyses of the motor protein of an archaeal flagellum.  相似文献   
95.
Pilin proteins assemble into Type IV pili (T4P), surface-displayed bacterial filaments with virulence functions including motility, attachment, transformation, immune escape, and colony formation. However, challenges in crystallizing full-length fiber-forming and membrane protein pilins leave unanswered questions regarding pilin structures, assembly, functions, and vaccine potential. Here we report pilin structures of full-length DnFimA from the sheep pathogen Dichelobacter nodosus and FtPilE from the human pathogen Francisella tularensis at 2.3 and 1 ? resolution, respectively. The DnFimA structure reveals an extended kinked N-terminal α-helix, an unusual centrally located disulfide, conserved subdomains, and assembled epitopes informing serogroup vaccines. An interaction between the conserved Glu-5 carboxyl oxygen and the N-terminal amine of an adjacent subunit in the crystallographic dimer is consistent with the hypothesis of a salt bridge between these groups driving T4P assembly. The FtPilE structure identifies an authentic Type IV pilin and provides a framework for understanding the role of T4P in F. tularensis virulence. Combined results define a unified pilin architecture, specialized subdomain roles in pilus assembly and function, and potential therapeutic targets.  相似文献   
96.

Background

Neuromyelitis optica (NMO) is a severely disabling inflammatory disorder of the central nervous system and is often misdiagnosed as multiple sclerosis (MS). There is increasing evidence that treatment options shown to be beneficial in MS, including interferon-β (IFN-β), are detrimental in NMO.

Case presentation

We here report the first Caucasian patient with aquaporin 4 (AQP4) antibody (NMO-IgG)-seropositive NMO presenting with a tumefactive brain lesion on treatment with IFN-β. Disease started with relapsing optic neuritis and an episode of longitudinally extensive transverse myelitis (LETM) in the absence of any brain MRI lesions or cerebrospinal fluid-restricted oligoclonal bands. After initial misdiagnosis of multiple sclerosis (MS) the patient received subcutaneous IFN-β1b and, subsequently, subcutaneous IFN-β1a therapy for several years. Under this treatment, the patient showed persisting relapse activity and finally presented with a severe episode of subacute aphasia and right-sided hemiparesis due to a large T2 hyperintensive tumefactive lesion of the left brain hemisphere and a smaller T2 lesion on the right side. Despite rituximab therapy two further LETM episodes occurred, resulting in severe neurological deficits. Therapeutic blockade of the interleukin (IL)-6 signalling pathway by tocilizumab was initiated, followed by clinical and radiological stabilization.

Conclusion

Our case (i) illustrates the relevance of correctly distinguishing NMO and MS since these disorders differ markedly in their responsiveness to immunomodulatory and -suppressive therapies; (ii) confirms and extends a previous report describing the development of tumefactive brain lesions under IFN-β therapy in two Asian NMO patients; and (iii) suggests tocilizumab as a promising therapeutic alternative in highly active NMO disease courses.
  相似文献   
97.
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM) has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI). High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R) and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS.  相似文献   
98.
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies.  相似文献   
99.
100.
Chamaegigas intrepidus Dinter is a poikilohydric aquatic plant that lives in rock pools on granite outcrops in central Namibia. The pools are filled with water only intermittently during the wet season, and the plants may pass through up to 20 rehydration/dehydration cycles during the summer rains. The potential nitrogen sources for the rehydrated plants are ammonium, which is only present at 10–20 μm, amino acids, particularly glycine, and urea, which is generally present at 20–30 μm. We show that urea can be utilised by plants in the field through the presence of urease in the sediments of the rock pools. Urease activity is higher in non-submerged than in submerged sediments, and it can survive 6 months of complete dryness at temperatures up to 60°C. Experiments with [14C]urea under laboratory conditions show that the roots of C. intrepidus are unable to take up urea; while 15N-nuclear magnetic resonance experiments show that [15N]urea is only metabolised to labelled glutamine and glutamate after ammonium has been released by the action of urease. Thus urease plays a vital role in allowing urea to be utilised as a major N source in this nutrient-limited aquatic ecosystem. Received: 23 April 1999 / Accepted: 8 November 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号