首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1377篇
  免费   97篇
  国内免费   1篇
  1475篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   10篇
  2018年   13篇
  2017年   8篇
  2016年   21篇
  2015年   56篇
  2014年   49篇
  2013年   77篇
  2012年   96篇
  2011年   102篇
  2010年   60篇
  2009年   59篇
  2008年   81篇
  2007年   86篇
  2006年   76篇
  2005年   72篇
  2004年   95篇
  2003年   63篇
  2002年   73篇
  2001年   17篇
  2000年   10篇
  1999年   15篇
  1998年   31篇
  1997年   17篇
  1996年   10篇
  1995年   17篇
  1994年   20篇
  1993年   17篇
  1992年   22篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   9篇
  1987年   9篇
  1986年   7篇
  1985年   14篇
  1984年   15篇
  1983年   4篇
  1982年   18篇
  1981年   5篇
  1980年   13篇
  1979年   9篇
  1978年   11篇
  1977年   4篇
  1976年   7篇
  1975年   9篇
  1974年   4篇
  1961年   3篇
排序方式: 共有1475条查询结果,搜索用时 125 毫秒
81.

Purpose

In order to reduce its environmental impact, the chemical industry no longer produces base chemicals such as ethylene, solely from fossil, but also from biomass-based feedstocks. However, a biomass option suitable for one region might not be as suitable for another region due to, e.g., long transport and the related environmental. Therefore, local biomass alternatives and the environmental impact related to the production of chemicals from these alternatives need to be investigated. This study assesses the environmental impact of producing ethylene from Swedish wood ethanol.

Methods

The study was conducted following the methodology of life cycle assessment. The life cycle was assessed using a cradle-to-gate perspective for the production of 50,000 tonnes ethylene/year for the impact categories global warming, acidification (ACP), photochemical ozone creation, and eutrophication (EP).

Results and discussion

The production of enzymes used during the life cycle had a significant effect on all investigated impacts. However, reduced consumption of enzyme product, which could possibly be realized considering the rapid development of enzymes, lowered the overall environmental impact of the ethylene. Another approach could be to use alternative hydrolyzing agents. However, little information on their environmental impact is available. An additional key contributor, with regard to ACP, EP, and POCP, was the ethanol production. Therefore, further improvements with regard to the process’ design may have beneficial effects on its environmental impact.

Conclusions

The study assessed the environmental impact of wood ethylene and pointed to several directions for improvements, such as improved enzyme production and reduced consumption of enzyme products. Moreover, the analysis showed that further investigations into other process options and increase of ethylene production from biomass are worth continued research.  相似文献   
82.
Aminoacyl-tRNA synthetases (AARSs) play a critical role in translation and are thus required in three plant protein-synthesizing compartments: cytosol, mitochondria and plastids. A systematic study had previously shown extensive sharing of organellar AARSs from Arabidopsis thaliana, mostly between mitochondria and chloroplasts. However, distribution of AARSs from monocot species, such as maize, has never been experimentally investigated. Here we demonstrate dual targeting of maize seryl-tRNA synthetase, SerZMo, into both mitochondria and chloroplasts using combination of complementary methods, including in vitro import assay, transient expression analysis of green fluorescent protein (GFP) fusions and immunodetection. We also show that SerZMo dual localization is established by the virtue of an ambiguous targeting peptide. Full-length SerZMo protein fused to GFP is targeted to chloroplast stromules, indicating that SerZMo protein performs its function in plastid stroma. The deletion mutant lacking N-terminal region of the ambiguous SerZMo targeting peptide was neither targeted into mitochondria nor chloroplasts, indicating the importance of this region in both mitochondrial and chloroplastic import.  相似文献   
83.
Thirty-one endophytic bacteria isolated from healthy leaves of Centella asiatica were screened in vitro for their ability to reduce the growth rate and disease incidence of Colletotrichum higginsianum, a causal agent of anthracnose. Isolates of Cohnella sp., Paenibacillus sp. and Pantoea sp. significantly stimulated the growth rate of C. higginsianum MUCL 44942, while isolates of Achromobacter sp., Acinetobacter sp., Microbacterium sp., Klebsiella sp. and Pseudomonas putida had no influence on this plant pathogen. By contrast, Bacillus subtilis BCA31 and Pseudomonas fluorescens BCA08 caused a marked inhibition of C. higginsianum MUCL 44942 growth by 46 and 82 %, respectively. Cell-free culture filtrates of B. subtilis BCA31 and P. fluorescens BCA08 were found to contain antifungal compounds against C. higginsianum MUCL 44942. Inoculation assays on in vitro-cultured plants of C. asiatica showed that foliar application of B. subtilis BCA31, three days before inoculation with C. higginsianum MUCL 44942, significantly reduced incidence and severity of the disease. The role of endophytic bacteria in maintaining the apparent inactivity of C. higginsianum MUCL 44942 in C. asiatica grown in the wild is discussed.  相似文献   
84.
Recent results suggest that cytoplasmic mRNAs can form translationally repressed messenger ribonucleoprotein particles (mRNPs) capable of decapping and degradation, or accumulation into cytoplasmic processing bodies (P-bodies), which can function as sites of mRNA storage. The proteins that function in transitions between the translationally repressed mRNPs that accumulate in P-bodies and mRNPs engaged in translation are largely unknown. Herein, we demonstrate that the yeast translation initiation factor Ded1p can localize to P-bodies. Moreover, depletion of Ded1p leads to defects in P-body formation. Overexpression of Ded1p results in increased size and number of P-bodies and inhibition of growth in a manner partially suppressed by loss of Pat1p, Dhh1p, or Lsm1p. Mutations that inactivate the ATPase activity of Ded1p increase the overexpression growth inhibition of Ded1p and prevent Ded1p from localizing in P-bodies. Combined with earlier work showing Ded1p can have a positive effect on translation, these results suggest that Ded1p is a bifunctional protein that can affect both translation initiation and P-body formation.  相似文献   
85.
The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) represent a major public health concern because these bacteria are usually extensively resistant to most antibiotics. In order to evaluate their dissemination in Quebec, a surveillance program was introduced in 2010. We report the molecular and epidemiological profiles of CPE isolates collected. Between August 2010 and December 2012, a total of 742 non-duplicate isolates non-susceptible to carbapenems were analysed. AmpC β-lactamase and metallo-β-lactamase production were detected by Etest and carbapenemase production by the modified Hodge test (MHT). Antibiotic susceptibility profiles were determined using broth microdilution or Etest. Clonality of Klebsiella pneumoniae carbapenemase (KPC) strains was analyzed by pulsed-field gel electrophoresis (PFGE). The presence of genes encoding carbapenemases as well as other β-lactamases was detected using PCR. Of the 742 isolates tested, 169 (22.8%) were CPE. Of these 169 isolates, 151 (89.3%) harboured a bla KPC gene while the remaining isolates carried bla SME (n = 9), bla OXA-48 (n = 5), bla NDM (n = 3), and bla NMC (n = 1) genes. Among the 93 KPC strains presenting with a unique pattern (unique PFGE pattern and/or unique antibiotics susceptibility profile), 99% were resistant to ertapenem, 95% to imipenem, 87% to meropenem, 97% to aztreonam, 31% to colistin and 2% to tigecycline. In 19 patients, 2 to 5 KPC strains from different species or with a different PFGE pattern were isolated. CPE strains were present in the province of Quebec with the majority of strains harbouring KPC. Alternately, SME, OXA-48 and NMC containing strains were rarely found.  相似文献   
86.

Aim

Cardioversion can rapidly and effectively restore sinus rhythm in patients with persistent atrial fibrillation. Since 2011 dabigatran has been available as an alternative to warfarin to prevent thromboembolic events in patients with non-valvular atrial fibrillation undergoing cardioversion. We studied time to cardioversion, risk of adverse events, and risk of readmission with atrial fibrillation after cardioversion according to anticoagulation therapy.

Methods and Results

Through the nationwide Danish registries we included 1,230 oral anticoagulation naïve patients with first time non-valvular atrial fibrillation and first time cardioversion from 2011 to 2012; 37% in the dabigatran group (n = 456), and 63% in the warfarin group (n = 774). Median time to cardioversion was 4.0 (interquartile range [IQR] 2.9 to 6.5) and 6.9 (IQR 3.9 to 12.1) weeks in the dabigatran and warfarin groups respectively, and the adjusted odds ratio of cardioversion within the first 4 weeks was 2.3 (95% confidence interval [CI] 1.7 to 3.1) in favor of dabigatran. The cumulative incidence of composite endpoint of stroke, bleeding or death were 2.0% and 1.0% at 30 weeks in the warfarin and dabigatran groups respectively, with an adjusted hazard ratio of 1.33 (95% CI 0.33 to 5.42). Cumulative incidence of readmission with atrial fibrillation after 30 weeks were 9% and 11% in the warfarin and dabigatran groups, respectively, and an adjusted hazard ratio of 0.66 (95% CI 0.41 to 1.08).

Conclusion

Anticoagulation treatment with dabigatran allows shorter time to cardioversion for atrial fibrillation than warfarin, and appears to be an effective and safe alternative treatment strategy to warfarin.  相似文献   
87.
The mechanism of action of microcin E492 (MccE492) was investigated for the first time in live bacteria. MccE492 was expressed and purified to homogeneity through an optimized large-scale procedure. Highly purified MccE492 showed potent antibacterial activity at minimal inhibitory concentrations in the range of 0.02-1.2 microM. The microcin bactericidal spectrum of activity was found to be restricted to Enterobacteriaceae and specifically directed against Escherichia and Salmonella species. Isogenic bacteria that possessed mutations in membrane proteins, particularly of the TonB-ExbB-ExbD complex, were assayed. The microcin bactericidal activity was shown to be TonB- and energy-dependent, supporting the hypothesis that the mechanism of action is receptor mediated. In addition, MccE492 depolarized and permeabilized the E. coli cytoplasmic membrane. The membrane depolarization was TonB dependent. From this study, we propose that MccE492 is recognized by iron-siderophore receptors, including FepA, which promote its import across the outer membrane via a TonB- and energy-dependent pathway. MccE492 then inserts into the inner membrane, whereupon the potential becomes destabilized by pore formation. Because cytoplasmic membrane permeabilization of MccE492 occurs beneath the threshold of the bactericidal concentration and does not result in cell lysis, the cytoplasmic membrane is not hypothesized to be the sole target of MccE492.  相似文献   
88.
In order to study some of its enzymatic properties, phosphatidylinositol synthase 1 (AtPIS1) from the plant Arabidopsis thaliana was expressed in Escherichia coli, a host naturally devoid of phosphatidylinositol (PtdIns). In the context of the bacterial membrane and in addition to de novo synthesis, the plant enzyme is capable of catalysing the exchange of the inositol polar head for another inositol. Our data clearly show that the CDP-diacylglycerol-independent exchange reaction can occur using endogenous PtdIns molecular species or PtdIns molecular species from soybean added exogenously. Exchange has been observed in the absence of cytidine monophosphate (CMP), but is greatly enhanced in the presence of 4 microm CMP. Our data also show that AtPIS1 catalyses the removal of the polar head in the presence of much higher concentrations of CMP, in a manner that suggests a reverse of synthesis. All of the PtdIns metabolizing activities require free manganese ions. EDTA, in the presence of low Mn2+ concentrations, also has an enhancing effect.  相似文献   
89.
Prolylcarboxypeptidase (PRCP, EC 3.4.16.2), a lysosomal carboxypeptidase, was discovered 45 years ago. However, research has been hampered by a lack of well-validated assays that are needed to measure low activities in biological samples. Two reversed-phase high-performance liquid chromatography (RP-HPLC) methods for quantifying PRCP activity in crude homogenates and plasma samples were optimized and validated. PRCP activity was determined by measuring the hydrolysis of N-benzyloxycarbonyl-l-proline (Z-Pro)-Phe. The enzymatically formed Z-Pro and Phe were measured independently under different HPLC conditions. The in-house methods showed good precision, linearity, accuracy, and specificity. Based on Michaelis–Menten constants, Z-Pro-Phe was chosen over Z-Pro-Ala as the substrate of preference. Cross-reactivity studies with dipeptidyl peptidases (DPPs) 2, 4, and 9 and prolyl oligopeptidase (PREP) confirmed the specificity of the PRCP activity assay. The average PRCP activity in plasma and serum of 32 healthy individuals was found to be 0.65 ± 0.02 and 0.72 ± 0.03 U/L, respectively. Both methods can be used to measure PRCP activity specifically in different biological samples and are well suited to evaluate PRCP inhibitors. These well-validated methods are valuable tools for studying PRCP’s role in cardiovascular diseases, stroke, inflammation, and metabolic syndrome.  相似文献   
90.
Trinucleotide repeat (TNR) expansions cause at least 17 heritable neurological diseases, including Huntington’s disease. Expansions are thought to arise from abnormal processing of TNR DNA by specific trans-acting proteins. For example, the DNA repair complex MutSβ (MSH2–MSH3 heterodimer) is required in mice for on-going expansions of long, disease-causing alleles. A distinctive feature of TNR expansions is a threshold effect, a narrow range of repeat units (∼30–40 in humans) at which mutation frequency rises dramatically and disease can initiate. The goal of this study was to identify factors that promote expansion of threshold-length CTG•CAG repeats in a human astrocytic cell line. siRNA knockdown of the MutSβ subunits MSH2 or MSH3 impeded expansions of threshold-length repeats, while knockdown of the MutSα subunit MSH6 had no effect. Chromatin immunoprecipitation experiments indicated that MutSβ, but not MutSα, was enriched at the TNR. These findings imply a direct role for MutSβ in promoting expansion of threshold-length CTG•CAG tracts. We identified the class II deacetylase HDAC5 as a novel promoting factor for expansions, joining the class I deacetylase HDAC3 that was previously identified. Double knockdowns were consistent with the possibility that MutSβ, HDAC3 and HDAC5 act through a common pathway to promote expansions of threshold-length TNRs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号