全文获取类型
收费全文 | 369篇 |
免费 | 12篇 |
专业分类
381篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 2篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 4篇 |
2016年 | 8篇 |
2015年 | 26篇 |
2014年 | 19篇 |
2013年 | 26篇 |
2012年 | 40篇 |
2011年 | 41篇 |
2010年 | 31篇 |
2009年 | 24篇 |
2008年 | 27篇 |
2007年 | 21篇 |
2006年 | 17篇 |
2005年 | 17篇 |
2004年 | 14篇 |
2003年 | 17篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有381条查询结果,搜索用时 8 毫秒
91.
de Chassey B Mikaelian I Mathieu AL Bickle M Olivier D Nègre D Cosset FL Rudkin BB Colas P 《Molecular & cellular proteomics : MCP》2007,6(3):451-459
Peptide aptamers are combinatorial recognition molecules that consist of a constant scaffold protein displaying a doubly constrained variable peptide loop. They bind specifically target proteins and interfere with their function. We have built a peptide aptamer library in a lentiviral expression system to isolate aptamers that inhibit cell proliferation in vitro. Using one of the isolated aptamers (R5G42) as a bait protein, we have performed yeast two-hybrid screening of cDNA libraries and identified calcineurin A as a target protein candidate. R5G42 bound calcineurin A in vitro and stimulated its phosphatase activity. When expressed transiently in human cells, R5G42 induced the dephosphorylation of BAD. We have identified an antiproliferative peptide aptamer that binds calcineurin and stimulates its activity. The use of this ligand may help elucidate the still elusive structural mechanisms of activation and inhibition of calcineurin. Our work illustrates the power of phenotypic screening of combinatorial protein libraries to interrogate the proteome and chart molecular regulatory networks. 相似文献
92.
AL Flamar S Zurawski F Scholz I Gayet L Ni XH Li E Klechevsky J Quinn S Oh DH Kaplan J Banchereau G Zurawski 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(5):2645-2655
Targeting of Ags directly to dendritic cells (DCs) through anti-DC receptor Ab fused to Ag proteins is a promising approach to vaccine development. However, not all Ags can be expressed as a rAb directly fused to a protein Ag. In this study, we show that noncovalent assembly of Ab-Ag complexes, mediated by interaction between dockerin and cohesin domains from cellulose-degrading bacteria, can greatly expand the range of Ags for this DC-targeting vaccine technology. rAbs with a dockerin domain fused to the rAb H chain C terminus are efficiently secreted by mammalian cells, and many Ags not secreted as rAb fusion proteins are readily expressed as cohesin directly fused to Ag either via secretion from mammalian cells or as soluble cytoplasmic Escherichia coli products. These form very stable and homogeneous complexes with rAb fused to dockerin. In vitro, these complexes can efficiently bind to human DC receptors followed by presentation to Ag-specific CD4(+) and CD8(+) T cells. Low doses of the HA1 subunit of influenza hemagglutinin conjugated through this means to anti-Langerin rAbs elicited Flu HA1-specific Ab and T cell responses in mice. Thus, the noncovalent assembly of rAb and Ag through dockerin and cohesin interaction provides a useful modular strategy for development and testing of prototype vaccines for elicitation of Ag-specific T and B cell responses, particularly when direct rAb fusions to Ag cannot be expressed. 相似文献
93.
94.
Storage oil breakdown plays an important role in the life cycle of many plants by providing the carbon skeletons that support seedling growth immediately following germination. This metabolic process is initiated by lipases (EC: 3.1.1.3), which catalyze the hydrolysis of triacylglycerols (TAGs) to release free fatty acids and glycerol. A number of lipases have been purified to near homogeneity from seed tissues and analysed for their in vitro activities. Furthermore, several genes encoding lipases have been cloned and characterised from plants. However, only recently has data been presented to establish the molecular identity of a lipase that has been shown to be required for TAG breakdown in seeds. In this review we briefly outline the processes of TAG synthesis and breakdown. We then discuss some of the biochemical literature on seed lipases and describe the cloning and characterisation of a lipase called SUGAR-DEPENDENT1, which is required for TAG breakdown in Arabidopsis thaliana seeds. 相似文献
95.
96.
97.
Roux AL Ray A Pawlik A Medjahed H Etienne G Rottman M Catherinot E Coppée JY Chaoui K Monsarrat B Toubert A Daffé M Puzo G Gaillard JL Brosch R Dulphy N Nigou J Herrmann JL 《Cellular microbiology》2011,13(5):692-704
Changes in the cell envelope composition of mycobacteria cause major changes in cytokine profiles of infected antigen presenting cells. We describe here the modulation of inflammatory responses by Mycobacterium abscessus, an emerging pathogen in cystic fibrosis. M. abscessus is able to switch from a smooth (S) to a rough (R) morphotype by the loss of a surface glycopeptidolipid. R variants are associated with severe clinical forms and a 'hyper-proinflammatory' response in ex vivo and in vivo models. Using partitioning of cell surface components we found that a complex fraction, more abundant in R variants than in S variants, made a major contribution to the TLR-2-dependent hyper-proinflammatory response induced by R variants. Lipoproteins were the main TLR-2 agonists in this fraction, consistent with the larger amounts of 16 lipoproteins in cell surface extracts from R variants; 15 out of 16 being more strongly induced in R variant than in S variant. Genetic interruption of glycopeptidolipid pathway in wild-type S variant resulted in R phenotype with similar induction of lipoprotein genes. In conclusion, R morphotype in M. abscessus is associated with increased synthesis/exposure at the cell surface of lipoproteins, these changes profoundly modifying the innate immune response through TLR-2-dependent mechanisms. 相似文献
98.
The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k 总被引:1,自引:0,他引:1
Protein translation is an essential but energetically expensive process, which is carefully regulated in accordance to the cellular nutritional and energy status. Eukaryotic elongation factor 2 (eEF2) is a central regulation point since it mediates ribosomal translocation and can be inhibited by phosphorylation at Thr56. TRPM7 is the unique fusion of an ion channel with a functional Ser/Thr-kinase. While TRPM7's channel function has been implicated in regulating vertebrate Mg2+ uptake required for cell growth, the function of its kinase domain remains unclear. Here, we show that under conditions where cell growth is limited by Mg2+ availability, TRPM7 via its kinase mediates enhanced Thr56 phosphorylation of eEF2. TRPM7-kinase does not appear to directly phosphorylate eEF2, but rather to influence the amount of eEF2's cognate kinase eEF2-k, involving its phosphorylation at Ser77. These findings suggest that TRPM7's structural duality ensures ideal positioning of its kinase in close proximity to channel-mediated Mg2+ uptake, allowing for the adjustment of protein translational rates to the availability of Mg2+. 相似文献
99.
It has previously been reported that exposure of purified mitochondrial or cytoplasmic aconitase to superoxide (O(2)(-)(*) or hydrogen peroxide (H(2)O(2)) leads to release of the Fe-alpha from the enzyme's [4Fe-4S](2+) cluster and to inactivation. Nevertheless, little is known regarding the response of aconitase to pro-oxidants within intact mitochondria. In the present study, we provide evidence that aconitase is rapidly inactivated and subsequently reactivated when isolated cardiac mitochondria are treated with H(2)O(2). Reactivation of the enzyme is dependent on the presence of the enzyme's substrate, citrate. EPR spectroscopic analysis indicates that enzyme inactivation precedes release of the labile Fe-alpha from the enzyme's [4Fe-4S](2+) cluster. In addition, as judged by isoelectric focusing gel electrophoresis, the relative level of Fe-alpha release and cluster disassembly does not reflect the magnitude of enzyme inactivation. These observations suggest that some form of posttranslational modification of aconitase other than release of iron is responsible for enzyme inactivation. In support of this conclusion, H(2)O(2) does not exert its inhibitory effects by acting directly on the enzyme, rather inactivation appears to result from interaction(s) between aconitase and a mitochondrial membrane component responsive to H(2)O(2). Nevertheless, prolonged exposure of mitochondria to steady-state levels of H(2)O(2) or O(2)(-)(*) results in disassembly of the [4Fe-4S](2+) cluster, carbonylation, and protein degradation. Thus, depending on the pro-oxidant species, the level and duration of the oxidative stress, and the metabolic state of the mitochondria, aconitase may undergo reversible modulation in activity or progress to [4Fe-4S](2+) cluster disassembly and proteolytic degradation. 相似文献
100.