全文获取类型
收费全文 | 375篇 |
免费 | 16篇 |
专业分类
391篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 2篇 |
2019年 | 5篇 |
2018年 | 6篇 |
2017年 | 7篇 |
2016年 | 9篇 |
2015年 | 26篇 |
2014年 | 19篇 |
2013年 | 28篇 |
2012年 | 41篇 |
2011年 | 41篇 |
2010年 | 32篇 |
2009年 | 24篇 |
2008年 | 27篇 |
2007年 | 21篇 |
2006年 | 17篇 |
2005年 | 17篇 |
2004年 | 14篇 |
2003年 | 18篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
排序方式: 共有391条查询结果,搜索用时 46 毫秒
101.
It has previously been reported that exposure of purified mitochondrial or cytoplasmic aconitase to superoxide (O(2)(-)(*) or hydrogen peroxide (H(2)O(2)) leads to release of the Fe-alpha from the enzyme's [4Fe-4S](2+) cluster and to inactivation. Nevertheless, little is known regarding the response of aconitase to pro-oxidants within intact mitochondria. In the present study, we provide evidence that aconitase is rapidly inactivated and subsequently reactivated when isolated cardiac mitochondria are treated with H(2)O(2). Reactivation of the enzyme is dependent on the presence of the enzyme's substrate, citrate. EPR spectroscopic analysis indicates that enzyme inactivation precedes release of the labile Fe-alpha from the enzyme's [4Fe-4S](2+) cluster. In addition, as judged by isoelectric focusing gel electrophoresis, the relative level of Fe-alpha release and cluster disassembly does not reflect the magnitude of enzyme inactivation. These observations suggest that some form of posttranslational modification of aconitase other than release of iron is responsible for enzyme inactivation. In support of this conclusion, H(2)O(2) does not exert its inhibitory effects by acting directly on the enzyme, rather inactivation appears to result from interaction(s) between aconitase and a mitochondrial membrane component responsive to H(2)O(2). Nevertheless, prolonged exposure of mitochondria to steady-state levels of H(2)O(2) or O(2)(-)(*) results in disassembly of the [4Fe-4S](2+) cluster, carbonylation, and protein degradation. Thus, depending on the pro-oxidant species, the level and duration of the oxidative stress, and the metabolic state of the mitochondria, aconitase may undergo reversible modulation in activity or progress to [4Fe-4S](2+) cluster disassembly and proteolytic degradation. 相似文献
102.
103.
The town of Carquefou, some 10 km northeast of Nantes on the left bank of the river Erdre, occupies a site long associated
with human activity. During road construction east of the town, ditches, enclosures and post holes characteristic of the late
la Tène were discovered at the locality of “Le Clouet”, which led us to obtain core samples from a nearby peat bog. These
investigations indicated the changes in vegetation since 3915±95 uncal B.P., [2828 (2459) 2074 cal B.C.]. The slopes in the
surroundings of the bog have been relatively treeless since the Bronze Age, but a very open woodland vegetation composed of
Tilia, Corylus and Quercus has been maintained until the present day. In the area around the bog, and Alnus wood with an undergrowth of Cyperaceae was the dominant vegetation, despite some changes probably related to human occupation
since the Bronze Age. Beginning at 955±35 uncal B.P. [1004 (1036, 1144, 1146) 1181 cal A.D.], in the Middle Ages, the alders
disappeared almost totally, apparently because of clearance or an increase in water level. Human presence led to intensified
cultivation of different crops including Cannabis and especially Cerealia. Finally, the presence of a variety of anthropogenic indicator plants (Cichorioideae, Asteraceae,
Plantago lanceolata, etc.) suggests that cattle were reared in the vicinity of the site.
Received May 22, 2000 / Accepted March 29, 2001 相似文献
104.
Zahia Touat-Hamici Yona Legrain Anne-Laure Bulteau Laurent Chavatte 《The Journal of biological chemistry》2014,289(21):14750-14761
Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3′ UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus. 相似文献
105.
Drivers of phytoplankton diversity in Lake Tanganyika 总被引:1,自引:0,他引:1
Jean-Pierre Descy Anne-Laure Tarbe Stéphane Stenuite Samuel Pirlot Johan Stimart Julie Vanderheyden Bruno Leporcq Maya P. Stoyneva Ismael Kimirei Danny Sinyinza Pierre-Denis Plisnier 《Hydrobiologia》2010,653(1):29-44
In keeping with the theme of this volume, the present article commemorates the 50 years of Hutchinson’s (Am Nat 93:145–159, 1959) famous publication on the ‘very general question of animal diversity’, which obviously leads to the more important question regarding the driving forces of biodiversity and their limitation in various habitats. The study of phytoplankton in large lakes is a challenging task which requires the use of a wide variety of techniques to capture the range of spatial and temporal variations. The analysis of marker pigments may provide an adequate tool for phytoplankton surveys in large water bodies, thanks to automated analysis for processing numerous individual samples, and by achieving sufficient taxonomic resolution for ecological studies. Chlorophylls and carotenoids were analysed by HPLC in water column samples of Lake Tanganyika from 2002 through 2006, at two study sites, off Kigoma (north basin) and off Mpulungu (south basin). Using the CHEMTAX software for calculating contributions of the main algal groups to chlorophyll a, variations of phytoplankton composition and biomass were determined. We also investigated selected samples according to standard taxonomic techniques for elucidating the dominant species composition. Most of the phytoplankton biomass was located in the 0–40 m layer, with maxima at 0 or 20 m, and more rarely at 40 m. Deep chlorophyll maxima (DCM) and surface ‘blooms’ were occasionally observed. The phytoplankton assemblage was essentially dominated by chlorophytes and cyanobacteria, with diatoms developing mainly in the dry season. The dominant cyanobacteria were very small unicells (mostly Synechococcus), which were much more abundant in the southern basin, whereas green algae dominated on average at the northern site. A canonical correspondence analysis (CCA) including the main limnological variables, dissolved nutrients and zooplankton abundance was run to explore environment–phytoplankton relations. The CCA points to physical factors, site and season as key determinants of the phytoplankton assemblage, but also indicates a significant role, depending on the studied site, of calanoid copepods and of nauplii stages. Our data suggest that the factors allowing coexistence of several phytoplankton taxa in the pelagic zone of Lake Tanganyika are likely differential vertical distribution in the water column, which allows spatial partitioning of light and nutrients, and temporal variability (occurring at time scales preventing long-term dominance by a single taxon), along with effects of predation by grazers. 相似文献
106.
Elisa Ardizzoni Emmanuel Fajardo Peter Saranchuk Martina Casenghi Anne-Laure Page Francis Varaine Cara S. Kosack Pamela Hepple 《PloS one》2015,10(12)
Background
The Xpert® MTB/RIF (Xpert) is an automated molecular test for simultaneous detection of tuberculosis (TB) and rifampicin resistance, recommended by the World Health Organization as the preferred diagnostic method for individuals presumed to have multi-drug resistant TB (MDR-TB) or HIV-associated TB. We describe the performance of Xpert and key lessons learned during two years of implementation under routine conditions in 33 projects located in 18 countries supported by Médecins Sans Frontières across varied geographic, epidemiological and clinical settings.Methods
Xpert was used following three strategies: the first being as the initial test, with microscopy in parallel, for all presumptive TB cases; the second being only for patients at risk of MDR-TB, or with HIV- associated TB, or presumptive paediatric TB; and the third being as the initial test for these high-risk patients plus as an add-on test to microscopy in others. Routine laboratory data were collected, using laboratory registers. Qualitative data such as logistic aspects, human resources, and tool acceptance were collected using a questionnaire.Findings
In total, 52,863 samples underwent Xpert testing from April 2011 to December 2012. The average MTB detection rate was 18.5%, 22.3%, and 11.6% for the three different strategies respectively. Analysis of the results on samples tested in parallel showed that using Xpert as add-on test to microscopy would have increased laboratory TB confirmation by 49.7%, versus 42.3% for Xpert replacing microscopy. The main limitation of the test was the high rate of inconclusive results, which correlated with factors such as defective modules, cartridge version (G3 vs. G4) and staff experience. Operational and logistical hurdles included infrastructure renovation, basic computer training, regular instrument troubleshooting and maintenance, all of which required substantial and continuous support.Conclusion
The implementation of Xpert was feasible and significantly increased TB detection compared to microscopy, despite the high rate of inconclusive results. Xpert implementation was accompanied by considerable operational and logistical challenges. To further decentralize diagnosis, simpler, low-cost TB technologies well-suited to low-resource settings are still urgently needed. 相似文献107.
Anne-Laure Moyne Véronique Thor Bernard Pelissier Catherine Bergounioux Georges Freyssinet Pierre Gadal 《Plant cell reports》1988,7(6):437-440
Sunflower hypocotyl protoplasts have been isolated and cultured. Optimum plating density for cell division and colony formation was in the range of 5 to 7×104 cells/mi in an agarose medium supplemented with BAP (1 mg/l) and NAA (1 mg/l). Plating efficiency was 60% after 21 days of culture. In the resultant culture a mixed population of calli and embryoids was observed. Thirty seven percent of the cell clusters exhibited a developmental pattern similar to an embryoid. Many stages of embryogenesis were observed in the same cultures.Abbreviations 2,4-D
2,4 dichlorophenoxyacetic acid
- NAA
1-naphtaleneacetic acid
- IAA
Indole-3-acetic
- BAP
6-benzylamino purine
- GA3
Gibberellic acid 相似文献
108.
109.
Gaelle Brien Anne-Laure Debaud Xavier Robert Lisa Oliver Marie-Claude Trescol-Biemont Nicolas Cauquil Olivier Geneste Nushin Aghajari Francois M. Vallette Richard Haser Nathalie Bonnefoy-Berard 《The Journal of biological chemistry》2009,284(44):30257-30263
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix α9 is inserted in the hydrophobic groove formed by the BH1–3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix α9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix α9. Our data clearly indicate that this property of helix α9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1.Apoptosis is a highly regulated process that plays a key role in maintaining cellular homeostasis, and a delicate balance between proapoptotic and antiapoptotic regulators of apoptosis pathways ensures the proper survival of cells in a variety of tissues. Imbalance between proapoptotic and antiapoptotic proteins occurs in diseases such as cancer, where an overexpression of antiapoptotic proteins endows cells with a selective survival advantage that promotes malignancy. Bcl-2 family members are essential regulators of the intrinsic apoptotic pathway, which act at the level of mitochondria as initiators of cell death (1). This family comprises nearly 20 proteins divided into three main groups. Antiapoptotic members such as Bcl-2, Bcl-xL, Bcl-w, Bfl-1, and Mcl-1 promote cell survival, whereas proapoptotic members such as Bax and Bak function as death effectors. The life and death balance is displaced in favor of cell death by proapoptotic BH3-only proteins such as Bim, Bad, Bid, Puma, and Noxa, which interact with antiapoptotic proteins and inactivate their function (2) or directly interact with and activate the Bax-like proteins (3).Distinct subcellular localizations of antiapoptotic members have been reported correlating with the accessibility of their C-terminal tail. The C-terminal tail of the antiapoptotic proteins Bcl-2, Bcl-xL, and Bcl-w possess a hydrophobic region known to be a membrane anchor domain. Thus, Bcl-2 localizes to mitochondria as well as to the endoplasmic reticulum and nuclear membranes (4, 5, 6), and deletion of its C-terminal amino acids abrogates its targeting to the outer mitochondrial membrane (7). In contrast, in healthy cells, Bcl-xL and Bcl-w localize mainly in the cytosol because their C-terminal tails are sequestered. Bcl-xL exists as a homodimer through the exchange of the C-terminal tail bound in the hydrophobic groove of the reciprocal dimer partner (8), whereas the C-terminal tail of Bcl-w occupies its own hydrophobic groove in the monomer form (9, 10). It has been proposed that, following apoptotic stimuli, interaction of the BH3 domain from BH3-only proteins with the hydrophobic groove of Bcl-w or Bcl-xL liberates their C-terminal tail and then the two proteins translocate to the mitochondria (8, 11).Unlike Bcl-2, Bcl-xL, and Bcl-w, Bfl-1 and its murine homolog, A1, do not contain a well defined C-terminal transmembrane domain (12, 13). C-terminal ends of these two proteins are similar and contain several hydrophilic residues that interrupt their putative transmembrane hydrophobic domain. Whether the C-terminal tail of Bfl-1 functions as a membrane anchor remains to be clarified. Immunofluorescence analyses in an earlier study have shown that overexpressed human Bfl-1 is predominantly localized in the endoplasmic/nuclear envelope regions (14). Then, recent independent studies, with Bfl-1-overexpressing cells, suggested that Bfl-1 localizes to the mitochondria (15, 16, 17) and that the C-terminal end of Bfl-1 is important for anchoring Bfl-1 to the mitochondria due to GFP-Bfl-1 being associated to the mitochondria, whereas GFP-Bfl-1, devoid of its C-terminal tail, also localizes in the cytosol (16, 18). However, localization of endogenous Bfl-1 has never been investigated. In this study, we present a molecular modeling study of full-length Bfl-1 (FL-Bfl-1), based on the crystal structure of a truncated form of Bfl-1 (residues 1–149) in complex with the BIM-BH3 peptide (Protein Data Bank code 2VM6).4 Our model suggests that Bfl-1 may co-exist in two distinct conformational states, the first one with its C-terminal helix α9 (residues 155–175) inserted in the hydrophobic groove formed by the BH1–3 domain of Bfl-1, and the second one with its C-terminal tail. Interestingly, helical wheel projection of the C-terminal helix of Bfl-1 highlights its amphipathic character, a feature of transmembrane helices or membrane anchors. These observations incited the reinvestigation of the subcellular localization of Bfl-1 in both malignant B cell lines and peripheral blood lymphocytes (PBLs).5 We demonstrate here that endogenous Bfl-1 is preferentially anchored to the mitochondria in malignant B cell lines but also in healthy PBLs. Moreover, we show that both the anchorage of Bfl-1 to the mitochondria and the anti-apoptotic function of the protein are dependent on the amphipathic nature of the C-terminal helix. 相似文献
110.
Intragenic duplications of genetic material have important biological roles because of their protein sequence and structural consequences. We developed Swelfe to find internal repeats at three levels. Swelfe quickly identifies statistically significant internal repeats in DNA and amino acid sequences and in 3D structures using dynamic programming. The associated web server also shows the relationships between repeats at each level and facilitates visualization of the results. AVAILABILITY: http://bioserv.rpbs.jussieu.fr/swelfe. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献