首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   9篇
  157篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   10篇
  2014年   8篇
  2013年   7篇
  2012年   16篇
  2011年   6篇
  2010年   8篇
  2009年   12篇
  2008年   9篇
  2007年   12篇
  2006年   10篇
  2005年   6篇
  2004年   7篇
  2003年   12篇
  2002年   2篇
  2000年   1篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
151.
We recently demonstrated the presence of a new asparagine-linked complex glycan on plant glycoproteins that harbors the Lewis a (Lea), or Galbeta(1-3)[Fucalpha(1-4)]GlcNAc, epitope, which in mammalian cells plays an important role in cell-to-cell recognition. Here we show that the monoclonal antibody JIM 84, which is widely used as a Golgi marker in light and electron microscopy of plant cells, is specific for the Lea antigen. This antigen is present on glycoproteins of a number of flowering and non-flowering plants, but is less apparent in the Cruciferae, the family that includes Arabidopsis. Lea-containing oligosaccharides are found in the Golgi apparatus, and our immunocytochemical experiments suggest that it is synthesized in the trans-most part of the Golgi apparatus. Lea epitopes are abundantly present on extracellular glycoproteins, either soluble or membrane bound, but are never observed on vacuolar glycoproteins. Double-labeling experiments suggest that vacuolar glycoproteins do not bypass the late Golgi compartments where Lea is built, and that the absence of the Lea epitope from vacuolar glycoproteins is probably the result of its degradation by glycosidases en route to or after arrival in the vacuole.  相似文献   
152.
153.
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked glycosylation (alg) mutants. By contrast, little is known about biosynthesis and biological functions of N-glycans in plants. Here, we show that loss-of-function mutations in the Arabidopsis thaliana homolog of the yeast ALG12 result in transfer of incompletely assembled glycans to polypeptides. This metabolic defect significantly compromises the endoplasmic reticulum–associated degradation of bri1-9 and bri1-5, two defective transmembrane receptors for brassinosteroids. Consequently, overaccumulated bri1-9 or bri1-5 proteins saturate the quality control systems that retain the two mutated receptors in the endoplasmic reticulum and can thus leak out of the folding compartment, resulting in phenotypic suppression of the two bri1 mutants. Our results strongly suggest that the complete assembly of the lipid-linked glycans is essential for successful quality control of defective glycoproteins in Arabidopsis.  相似文献   
154.
Six sesquiterpenes were isolated and identified from the essential oil of the wood of Amyris balsamifera (Rutaceae): 10-epi-γ-eudesmol, α-agarofuran, 4-hydroxydihydroagarofuran, valerianol, β-eudesmol, elemol.  相似文献   
155.
156.
A laccase-type polyphenoloxidase (EC 1.10.3.2.), abundantly secreted by suspension-cultured sycamore (Acer pseudoplatanus) cells was purified to homogeneity. This laccase form is a glycoprotein (molecular weight 110000) with high mannose and complex glycans. The polypeptide moiety has a molecular weight of 66 000, indicating that the glycoprotein is 40% carbohydrate. Laccase is abundantly present in both the cell wall and the culture medium of suspension-cultured sycamore cells, but it is not detected in the cytoplasm, indicating that this large protein is efficiently secreted by the cells. Polyclonal rabbit antiserum was raised against the deglycosylated protein and was used to probe extracts of sycamore stem tissues. A second laccase form (molecular weight 56 000), antigenically related to laccase from cell cultures, is abundant in the epidermis of sycamore stems. In addition, this 56 kDa laccase form co-localizes with lignin precursors on tissue prints from sycamore stems. A polypeptide (molecular weight 50 000-56 000), antigenically related to sycamore laccase, was also immunodetected in most plant organs previously described in the literature as polyphenoloxidase-rich.  相似文献   
157.
Suspension-cultured cells of sycamore (Acer pseudoplatanus L.) secrete a number of acid hydrolases and other proteins that have both highmannose and complex asparagine-linked glycans. We used affinity chromatography with concanavalin A and an antiserum specific for complex glycans in conjunction with in vivo-labeling studies to show that all of the secreted proteins carry glycans. The presence of complex glycans on secretory proteins indicates that they are passing through the Golgi complex on the way to the extracellular compartment. The sodium ionophore, monensin, did not block the transport of proteins to the extracellular medium, even though monensin efficiently inhibited the Golgi-mediated processing of complex glycans. The inhibition of N-glycosylation by tunicamycin reduced by 76% to 84% the accumulation of newly synthesized (i.e. radioactively labeled) protein that was secreted by the sycamore cells, while cytoplasmic protein biosynthesis was not affected by this antibiotic. However, in the presence of glycoprotein-processing inhibitors, such as castanospermine and deoxymannojirimycin, the formation of complex glycans was prevented but glycoprotein secretion was unchanged. These results support the conclusion that N-linked glycan processing is not necessary for sorting, but glycosylation is required for accumulation of secreted proteins in the extracellular compartment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号