首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71866篇
  免费   6236篇
  国内免费   48篇
  2023年   209篇
  2022年   433篇
  2021年   1294篇
  2020年   712篇
  2019年   983篇
  2018年   1424篇
  2017年   1141篇
  2016年   2087篇
  2015年   3403篇
  2014年   3725篇
  2013年   4396篇
  2012年   5664篇
  2011年   5328篇
  2010年   3412篇
  2009年   3073篇
  2008年   4298篇
  2007年   4068篇
  2006年   3718篇
  2005年   3445篇
  2004年   3327篇
  2003年   3042篇
  2002年   2654篇
  2001年   1812篇
  2000年   1649篇
  1999年   1396篇
  1998年   731篇
  1997年   618篇
  1996年   528篇
  1995年   525篇
  1994年   430篇
  1993年   420篇
  1992年   752篇
  1991年   611篇
  1990年   556篇
  1989年   552篇
  1988年   477篇
  1987年   445篇
  1986年   385篇
  1985年   401篇
  1984年   361篇
  1983年   279篇
  1982年   272篇
  1981年   223篇
  1980年   223篇
  1979年   264篇
  1978年   219篇
  1977年   221篇
  1976年   194篇
  1974年   230篇
  1972年   180篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
71.
72.
Characterization of ribonucleolytic activity of angiogenin towards tRNA   总被引:2,自引:0,他引:2  
Yeast tRNA is a convenient substrate for the assay of the ribonucleolytic activity of human angiogenin. The optimal pH, [NaCl], and temperature for tRNA cleavage by angiogenin are approximately 6.8, 15-30 mM, and approximately 55 degrees C, respectively, as compared with approximately 8.0, 100-200 mM, and approximately 65 degrees C, respectively, for RNase A. Polyanions and metals both inhibit angiogenin and RNase A but to different extents.  相似文献   
73.
74.
75.
76.
Previous studies by a French group (Fertil Steril 44:645–651, 1985) have shown that two-to eight-cell human embryos can survive slow freeze-thawing with propanediol in a biological freezer. These embryos were assessed for morphological appearance by phase-contrast microscopy. We assessed the structure of 25 frozen-thawed one- to 12-cell embryos, obtained from our in vitro fertilization (IVF) and GIFT programmes, by phase-contrast and electron microscopy, using the same method of cryopreservation. One-fourth of the embryos examined had all cells intact, and more than one-half the embryos had over 50% of their cells well preserved. Some of these embryos had unequal blastomeres and cytoplasmic fragments. Ultrastructural assessment revealed good preservation of fine structure in the intact blastomeres of all embryos and maintenance of cell-to-cell contacts. Most cytoplasmic organelles, cell membranes, and nuclei were well preserved compared to nonfrozen controls. The cells that were cryoinjured showed varying degrees of disorganization of the cell membrane, cytosol, and cellular membranes, including swelling and disruption of the nuclear envelope. Disruption of the zona was somewhat rare. Small cytoplasmic fragments were less prone to cryoinjury than blastomeres. The use of propanediol for embryo cryopreservation seems to be feasible; frozen embryos with more than 50% cells intact have produced 10 pregnancies after embryo transfer (Fertil Steril 46:268–272, 1986). Replacement of 17 frozen embryos in seven patients has resulted in a twin pregnancy in Singapore. However, the effects of freezing on the mitotic spindles of embryonic cells need to be investigated further.  相似文献   
77.
Cocoyam is the second most important staple crop of Cameroon and root rot is a destructive disease of this plant. Pythium myriotylum (Pm), Fusarium solani (Fs), and Rhizoctonia solani (Rs) were isolated from the rhizosphere of root rot affected cocoyams and from the soil of a cocoyam experimental field plot temporarily devoid of same in Mamu, Cameroon. Pm was isolated from the above soil by the cocoyam leaf disc baits. Fs and Rs were also isolated from the same soils by the water dilution method and from the roots of diseased cocoyams but were always associated with mycelial growth of Pm. Pathogenicity of Pm and in combinations with Fs or Rs or Fs + Rs all developed cocoyam root rot disease (CRRD) symptoms on 3– and 7–month old cocoyam plantlets 2–7 days after inoculation. Symptoms included rotted roots and wilting with general chlorosis of inoculated plantlets. No symptoms of CRRD were noted on cocoyam plantlets inoculated with Fs, Rs, Fs + Rs, and distilled water. Results indicated that CRRD is not caused by several pathogens but only by Pm. Pm isolates from the soils and roots of diseased cocoyams and those maintained in the ROTREP laboratory have significantly bigger diameter of mycelial colony growth in 24 h–period at 31 °C on lima bean sucrose agar, V–8 juice sucrose agar, and potato sucrose agar than on potato dextrose agar and 2 % water agar. The cocoyam plantlets were raised axenically from tissue culture of explants in the laboratory.  相似文献   
78.
79.
80.
At around 7 months of age, human infants begin to reliably produce well-formed syllables containing both consonants and vowels, a behavior called canonical babbling. Over subsequent months, the frequency of canonical babbling continues to increase. How the infant’s nervous system supports the acquisition of this ability is unknown. Here we present a computational model that combines a spiking neural network, reinforcement-modulated spike-timing-dependent plasticity, and a human-like vocal tract to simulate the acquisition of canonical babbling. Like human infants, the model’s frequency of canonical babbling gradually increases. The model is rewarded when it produces a sound that is more auditorily salient than sounds it has previously produced. This is consistent with data from human infants indicating that contingent adult responses shape infant behavior and with data from deaf and tracheostomized infants indicating that hearing, including hearing one’s own vocalizations, is critical for canonical babbling development. Reward receipt increases the level of dopamine in the neural network. The neural network contains a reservoir with recurrent connections and two motor neuron groups, one agonist and one antagonist, which control the masseter and orbicularis oris muscles, promoting or inhibiting mouth closure. The model learns to increase the number of salient, syllabic sounds it produces by adjusting the base level of muscle activation and increasing their range of activity. Our results support the possibility that through dopamine-modulated spike-timing-dependent plasticity, the motor cortex learns to harness its natural oscillations in activity in order to produce syllabic sounds. It thus suggests that learning to produce rhythmic mouth movements for speech production may be supported by general cortical learning mechanisms. The model makes several testable predictions and has implications for our understanding not only of how syllabic vocalizations develop in infancy but also for our understanding of how they may have evolved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号