首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15851篇
  免费   1503篇
  国内免费   2篇
  2023年   44篇
  2022年   151篇
  2021年   301篇
  2020年   160篇
  2019年   233篇
  2018年   293篇
  2017年   252篇
  2016年   510篇
  2015年   808篇
  2014年   866篇
  2013年   1044篇
  2012年   1308篇
  2011年   1164篇
  2010年   762篇
  2009年   737篇
  2008年   929篇
  2007年   954篇
  2006年   881篇
  2005年   868篇
  2004年   810篇
  2003年   804篇
  2002年   750篇
  2001年   157篇
  2000年   97篇
  1999年   174篇
  1998年   200篇
  1997年   145篇
  1996年   123篇
  1995年   133篇
  1994年   124篇
  1993年   116篇
  1992年   108篇
  1991年   92篇
  1990年   86篇
  1989年   76篇
  1988年   74篇
  1987年   59篇
  1986年   73篇
  1985年   77篇
  1984年   93篇
  1983年   54篇
  1982年   82篇
  1981年   60篇
  1980年   64篇
  1979年   45篇
  1978年   29篇
  1977年   38篇
  1975年   31篇
  1974年   40篇
  1972年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
In the tequila industry, fermentation is traditionally achieved at sugar concentrations ranging from 50 to 100 g x L(-1). In this work, the behaviour of the Saccharomyces cerevisiae yeast (isolated from the juices of the Agave tequilana Weber blue variety) during the agave juice fermentation is compared at different sugar concentrations to determine if it is feasible for the industry to run fermentation at higher sugar concentrations. Fermentation efficiency is shown to be higher (above 90%) at a high concentration of initial sugar (170 g x L(-1)) when an additional source of nitrogen (a mixture of amino acids and ammonium sulphate, different than a grape must nitrogen composition) is added during the exponential growth phase.  相似文献   
992.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   
993.
We report the 2.1 A crystal structure of the core G protein domain of the unusual Rho family member RhoE/Rnd3 in complex with endogenous GTP and magnesium. Unlike other small G proteins, RhoE, along with two other proteins Rnd1/Rho6 and Rnd2/RhoN, does not hydrolyze GTP. The main reason for this is the presence of serines in the positions equivalent to Ala59 and Gln61 in Ras. The structure shows that there are still water molecules in similar positions to the waters thought to be involved in the hydrolysis reaction in other G proteins. The structure suggests three not necessarily exclusive explanations for the lack of hydrolysis. The lack of the conserved glutamine raises the energy of the transition state inhibiting hydrolysis. The serines may restrain the waters from moving closer to the GTP, a step that is required to attain the transition state. They also stabilize the GTP-bound conformation of switch II and could prevent conformational changes required during hydrolysis. By superposition of the RhoE structure on structures of Rho family proteins in complex with binding partners, we make predictions on RhoE interactions with these partners.  相似文献   
994.
Noronha AM  Wilds CJ  Miller PS 《Biochemistry》2002,41(27):8605-8612
Short DNA duplexes containing a 1,3-N(4)C-alkyl-N(4)C interstrand cross-link that joins the two C residues of a -CNG- sequence were prepared using either a phosphoramidite or convertible nucleoside approach. The alkyl cross-link consists of 2, 4, or 7 methylene groups. The duplexes, which contain a seven-base-pair core and A(3)/T(3) complementary 3'-overhanging ends, were characterized by enzymatic digestion and MALDI-TOF mass spectrometry. Ultraviolet thermal denaturation studies showed that the duplexes denature in a cooperative manner and that the length of the cross-link affects the thermal stability. Thus, the transition temperature of the ethyl cross-linked duplex, 42 degrees C, is 16 degrees C higher than the melting temperature of the corresponding non-cross-linked control, whereas the transition temperatures of the butyl and heptyl cross-linked duplexes, 73 and 72 degrees C, respectively, are 46-47 degrees C higher. The reduced molecularity of denaturation of the cross-linked duplexes versus melting of the non-cross-linked duplex most likely accounts for these differences. Examination of molecular models suggests that the ethyl cross-link is too short to span the distance between the two C residues at the site of the cross-link in B-form DNA without causing distortion of the helix, whereas less and no distortion would be expected for the butyl and heptyl cross-links, respectively. The circular dichroism spectra, which show greatest deviation in the ethyl cross-linked duplex from B-form DNA, are consistent with this expectation. Anomalous mobilities on native polyacrylamide gels of multimers produced by self-ligation of each of the cross-linked duplexes suggest that the ethyl and butyl cross-linked duplexes undergo bending deformations, whereas multimers derived from the heptyl cross-linked duplex migrated normally. The bending angle was estimated to be 20 degrees, 13 degrees, and 0 degrees for the ethyl, butyl, and heptyl cross-linked duplexes, respectively. Thus, it appears that the degree of bending in these N(4)C-alkyl-N(4)C cross-linked duplexes is controlled by the length of the cross-link.  相似文献   
995.
TNF alpha converting enzyme (TACE) processes precursor TNF alpha between Ala76 and Val77, yielding a correctly processed bioactive 17 kDa protein. Genetic evidence indicates that TACE may also be involved in the shedding of other ectodomains. Here we show that native and recombinant forms of TACE efficiently processed a synthetic substrate corresponding to the TNF alpha cleavage site only. For all other substrates, conversion occurred only at high enzyme concentrations and prolonged reaction times. Often, cleavage under those conditions was accompanied by nonspecific reactions. We also compared TNF alpha cleavage by TACE to cleavage by those members of the matrix metalloproteinase (MMP) family previously implied in TNF alpha release. The specificity constants for TNF alpha cleavage by the MMPs were approximately 100-1000-fold slower relative to TACE. MMP 7 also processed precursor TNF alpha at the correct cleavage site but did so with a 30-fold lower specificity constant relative to TACE. In contrast, MMP 1 processed precursor TNF alpha between Ala74 and Gln75, in addition to between Ala76 and Val77, while MMP 9 cleaved this natural substrate solely between Ala74 and Gln75. Additionally, the MMP substrate Dnp-PChaGC(Me)HK(NMA)-NH(2) was not cleaved at all by TACE, while collagenase (MMP 1), gelatinase (MMP 9), stromelysin 1 (MMP 3), and matrilysin (MMP 7) all processed this substrate efficiently. All of these results indicate that TACE is unique in terms of its specificity requirements for substrate cleavage.  相似文献   
996.
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) causes substantial morbidity afflicting approximately 10% of adult males. Treatment is often empirical and ineffective since the etiology is unknown. Other prostate and genitourinary diseases have genetic components suggesting that CP/CPPS may also be influenced by genetic predisposition. We recently reported a highly polymorphic short tandem repeat (STR) locus near the phosphoglycerate kinase gene within Xq11-13. Because this STR is in a region known to predispose towards other prostate diseases, we compared STR polymorphisms in 120 CP/CPPS patients and 300 control blood donors. Nine distinct allele sizes were detected, ranging from 8 to 15 repeats of the tetrameric STR plus a mutant allele (9.5) with a six base deletion in the flanking DNA sequence. The overall allele size distribution in the CP/CPPS patients differed from controls (Chi-square=19.252, df=8, P=0.0231). Frequencies of two specific alleles, 9.5 and 15, differed significantly in CP/CPPS vs. control subjects and allele 10 differed with marginal significance. Alleles 9.5 and 10 were both more common in CP/CPPS patients than controls while allele 15 was less common. These observations suggest that Xq11-13 may contain one or more genetic loci that predispose toward CP/CPPS. Further investigations involving family studies, larger patient populations, and other control groups may help elucidate this potential genetic predisposition in CP/CPPS.  相似文献   
997.
Cultured cells are able to oxidize low-density lipoproteins (LDL) and oxidized LDL (oxLDL), which are present in atherosclerosis areas, exhibit a variety of biological properties potentially involved in atherogenesis. This review is focused on the toxicity of oxLDL, more precisely on the toxic compounds generated during LDL oxidation, the features and the mechanisms of cell death (apoptosis or necrosis) induced by oxLDL. After internalization, toxic oxidized lipids, namely lipid peroxides, oxysterols and aldehydes, induce modifications of cell proteins, elicit oxidative stress, lipid peroxidation and alter various signaling pathways and gene expression. These events may participate in the toxic effect, and converge to trigger an intense, delayed and sustained calcium peak which elicits either apoptosis or necrosis processes. OxLDL-induced apoptosis involves both mitochondrial and death-receptor (Fas/FasL) apoptotic pathways, thereby activating the classical caspase cascade and subsequent biochemical and morphological apoptotic features. When apoptosis is blocked by overexpression of Bcl-2, oxLDL trigger necrosis through a calcium-dependent pathway. Apoptosis occurring in atherosclerotic areas is potentially involved in endothelial cell lining defects, necrotic core formation and plaque rupture or erosion which may trigger atherothrombotic events. However, the precise role of oxLDL in apoptosis/necrosis occurring in vivo in atherosclerotic plaques remains to be clarified.  相似文献   
998.
We have previously identified in some mouse strains (e.g. BALB/c, DBA/2) a murine Intracisternal A-particle (IAP) transposable element specifically expressed in the liver. This IAP sequence is inserted within a gene, mCCR4/m. nocturnin, the sequence of which is related to the circadian Xenopus nocturnin gene. Here we show, using real-time quantitative RT-PCR, that both the IAP sequence and the m. nocturnin gene display strong circadian expression in the liver, with peak abundance after dusk. Circadian oscillations of m. nocturnin RNA are maintained in mice without the IAP insertion (e.g. CBA/J, 129/sv), are free-running under constant light and dark conditions, and persist upon food and water privation, demonstrating that m. nocturnin is a circadian gene. In situ hybridization analyses (in 129/sv mice) further show circadian expression of m. nocturnin also in the retina, precisely at the level of the photoreceptors, a result consistent with the previously described circadian expression of the Xenopus gene. These results strengthen the strong conservation of the nocturnin gene with the identification of a functional mouse ortholog of the Xenopus gene, and demonstrate the reciprocal influence of nearby genes on the expression of transposable elements via "position effects".  相似文献   
999.
Myostatin knockout in mice increases myogenesis and decreases adipogenesis   总被引:34,自引:0,他引:34  
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion.  相似文献   
1000.
Previous studies have postulated the presence of a heparin-binding site on the bile salt-dependent lipase (BSDL), whereas two bile salt-binding sites regulate the enzyme activity. One of these sites may overlap with the tentative heparin-binding site at the level of an N-terminal basic cluster consisting of positive residues Lys(32), Lys(56), Lys(61), Lys(62), and Arg(63). The present study uses specific site-directed mutagenesis to determine the functional significance of this basic cluster. Mutations in this sequence resulted in recombinant enzymes that were able to bind to immobilized and to cell-associated heparin before moving throughout intestinal cells. Recombinant BSDL was fully active on soluble substrate, but mutants were less active on micellar cholesteryl oleate in comparison with the wild-type enzyme. Activation studies by primary (sodium taurocholate) and by secondary (sodium taurodeoxycholate) bile salts revealed that the activation of BSDL by sodium taurocholate at concentrations below the critical micellar concentration, and not that evoked by micellar bile salts, was affected by substitutions, suggesting that this N-terminal basic cluster likely represents the specific bile salt-binding site of BSDL. Substitutions also affected the activation of the enzyme promoted by anionic phospholipids, extending the function of this site to that of a cationic regulatory site susceptible to accommodate anionic ligands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号