首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15177篇
  免费   1453篇
  国内免费   2篇
  2023年   43篇
  2022年   105篇
  2021年   294篇
  2020年   148篇
  2019年   223篇
  2018年   281篇
  2017年   238篇
  2016年   499篇
  2015年   782篇
  2014年   828篇
  2013年   1005篇
  2012年   1269篇
  2011年   1131篇
  2010年   738篇
  2009年   722篇
  2008年   906篇
  2007年   931篇
  2006年   860篇
  2005年   846篇
  2004年   790篇
  2003年   788篇
  2002年   741篇
  2001年   141篇
  2000年   88篇
  1999年   157篇
  1998年   195篇
  1997年   142篇
  1996年   118篇
  1995年   125篇
  1994年   114篇
  1993年   111篇
  1992年   101篇
  1991年   82篇
  1990年   78篇
  1989年   65篇
  1988年   65篇
  1987年   51篇
  1986年   63篇
  1985年   68篇
  1984年   83篇
  1983年   46篇
  1982年   76篇
  1981年   56篇
  1980年   62篇
  1979年   41篇
  1977年   34篇
  1976年   23篇
  1974年   30篇
  1972年   22篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
We have previously identified in some mouse strains (e.g. BALB/c, DBA/2) a murine Intracisternal A-particle (IAP) transposable element specifically expressed in the liver. This IAP sequence is inserted within a gene, mCCR4/m. nocturnin, the sequence of which is related to the circadian Xenopus nocturnin gene. Here we show, using real-time quantitative RT-PCR, that both the IAP sequence and the m. nocturnin gene display strong circadian expression in the liver, with peak abundance after dusk. Circadian oscillations of m. nocturnin RNA are maintained in mice without the IAP insertion (e.g. CBA/J, 129/sv), are free-running under constant light and dark conditions, and persist upon food and water privation, demonstrating that m. nocturnin is a circadian gene. In situ hybridization analyses (in 129/sv mice) further show circadian expression of m. nocturnin also in the retina, precisely at the level of the photoreceptors, a result consistent with the previously described circadian expression of the Xenopus gene. These results strengthen the strong conservation of the nocturnin gene with the identification of a functional mouse ortholog of the Xenopus gene, and demonstrate the reciprocal influence of nearby genes on the expression of transposable elements via "position effects".  相似文献   
982.
Myostatin knockout in mice increases myogenesis and decreases adipogenesis   总被引:34,自引:0,他引:34  
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion.  相似文献   
983.
Previous studies have postulated the presence of a heparin-binding site on the bile salt-dependent lipase (BSDL), whereas two bile salt-binding sites regulate the enzyme activity. One of these sites may overlap with the tentative heparin-binding site at the level of an N-terminal basic cluster consisting of positive residues Lys(32), Lys(56), Lys(61), Lys(62), and Arg(63). The present study uses specific site-directed mutagenesis to determine the functional significance of this basic cluster. Mutations in this sequence resulted in recombinant enzymes that were able to bind to immobilized and to cell-associated heparin before moving throughout intestinal cells. Recombinant BSDL was fully active on soluble substrate, but mutants were less active on micellar cholesteryl oleate in comparison with the wild-type enzyme. Activation studies by primary (sodium taurocholate) and by secondary (sodium taurodeoxycholate) bile salts revealed that the activation of BSDL by sodium taurocholate at concentrations below the critical micellar concentration, and not that evoked by micellar bile salts, was affected by substitutions, suggesting that this N-terminal basic cluster likely represents the specific bile salt-binding site of BSDL. Substitutions also affected the activation of the enzyme promoted by anionic phospholipids, extending the function of this site to that of a cationic regulatory site susceptible to accommodate anionic ligands.  相似文献   
984.
Nitric-oxide synthase type I (NOS I) is expressed primarily in gonadotrophs and in folliculo-stellate cells of the anterior pituitary. In gonadotrophs, the expression and the activity of NOS I are stimulated by gonadotropin-releasing hormone (GnRH) under both experimental and physiological conditions. In the present study, we show that pituitary adenylate cyclase-activating polypeptide (PACAP) is twice as potent as GnRH at increasing NOS I levels in cultured rat anterior pituitary cells. The action of PACAP is detectable after 4-6 h and maximal at 24 h, this effect is mimicked by 8-bromo-cAMP and cholera toxin and suppressed by H89 suggesting a mediation through the cAMP pathway. Surprisingly, NADPH diaphorase staining revealed that these changes occurred in gonadotrophs exclusively although PACAP and cAMP, in contrast to GnRH, have the potential to target several types of pituitary cells including folliculo-stellate cells. There was no measurable alteration in NOS I mRNA levels after cAMP or PACAP induction. PACAP also stimulated cGMP synthesis, which was maximal within 15 min and independent of cAMP, however, only part resulted from NOS I/soluble guanylate cyclase activation implying that in contrast to GnRH, PACAP has a dual mechanism in cGMP production. Interestingly, induction of NOS I by PACAP markedly enhanced the capacity of gonadotrophs to produce cGMP in response to GnRH. The fact that PACAP may act on gonadotrophs to alter NOS I levels, generate cGMP, and potentiate the cGMP response to GnRH, suggests that cGMP could play important cellular functions.  相似文献   
985.
We report here that DNA polymerase beta (pol beta), the base excision repair polymerase, is highly expressed in human melanoma tissues, known to be associated with UV radiation exposure. To investigate the potential role of pol beta in UV-induced genetic instability, we analyzed the cellular and molecular effects of excess pol beta. We firstly demonstrated that mammalian cells overexpressing pol beta are resistant and hypermutagenic after UV irradiation and that replicative extracts from these cells are able to catalyze complete translesion replication of a thymine-thymine cyclobutane pyrimidine dimer (CPD). By using in vitro primer extension reactions with purified pol beta, we showed that CPD as well as, to a lesser extent, the thymine-thymine pyrimidine-pyrimidone (6-4) photoproduct, were bypassed. pol beta mostly incorporates the correct dATP opposite the 3'-terminus of both CPD and the (6-4) photoproduct but can also misinsert dCTP at a frequency of 32 and 26%, respectively. In the case of CPD, efficient and error-prone extension of the correct dATP was found. These data support a biological role of pol beta in UV lesion bypass and suggest that deregulated pol beta may enhance UV-induced genetic instability.  相似文献   
986.
987.
The identification of molecular motors that modulate the neuronal cytoskeleton has been elusive. Here, we show that a molecular motor protein, myosin Va, is present in high proportions in the cytoskeleton of mouse CNS and peripheral nerves. Immunoelectron microscopy, coimmunoprecipitation, and blot overlay analyses demonstrate that myosin Va in axons associates with neurofilaments, and that the NF-L subunit is its major ligand. A physiological association is indicated by observations that the level of myosin Va is reduced in axons of NF-L-null mice lacking neurofilaments and increased in mice overexpressing NF-L, but unchanged in NF-H-null mice. In vivo pulse-labeled myosin Va advances along axons at slow transport rates overlapping with those of neurofilament proteins and actin, both of which coimmunoprecipitate with myosin Va. Eliminating neurofilaments from mice selectively accelerates myosin Va translocation and redistributes myosin Va to the actin-rich subaxolemma and membranous organelles. Finally, peripheral axons of dilute-lethal mice, lacking functional myosin Va, display selectively increased neurofilament number and levels of neurofilament proteins without altering axon caliber. These results identify myosin Va as a neurofilament-associated protein, and show that this association is essential to establish the normal distribution, axonal transport, and content of myosin Va, and the proper numbers of neurofilaments in axons.  相似文献   
988.
Downstream of kinase (Dok)-related protein (DokR, also known as p56(dok)/FRIP/Dok-R) is implicated in cytokine and immunoreceptor signaling in myeloid and T cells. Tyrosine phosphorylation induces DokR to bind the signal relay molecules, RasGTPase-activating protein (RasGAP) and Nck. Here, we have examined the function of DokR during hematopoietic development and the requirement for RasGAP and Nck binding sites in its biological function. Retroviral-mediated expression of DokR in bone marrow cells dramatically inhibited their capacity to form colonies in vitro in response to the cytokines macrophage colony-stimulating factor and stem cell factor, whereas responses to interleukin-3 and granulocyte macrophage colony-stimulating factor were only weakly affected. When introduced into lethally irradiated mice, hematopoietic cells expressing DokR showed a drastically reduced capacity to repopulate lymphoid tissues. Most notably, DokR dramatically reduced repopulation of the thymus, in part by reducing the number of T cell precursors seeding in the thymus, but equally, through inhibiting the transition of CD4(-)CD8(-) to CD4(+)CD8(+) T cells. Consequently, the number of mature peripheral T cells was markedly reduced. In contrast, a minimal effect on B cell and myeloid lineage development was observed. Importantly, functional RasGAP and Nck binding sites were found to be essential for the biological effects of DokR in vitro and in vivo.  相似文献   
989.
Centrioles and basal bodies fascinate by their spectacular architecture, featuring an arrangement of nine microtubule triplets into an axial symmetry, whose biogenesis relies on yet elusive mechanisms. However, the recent discovery of new tubulins, such as delta-, epsilon-, or eta-tubulin, could constitute a breakthrough for deciphering the assembly steps of this unconventional microtubule scaffold. Here, we report the functional analysis in vivo of epsilon-tubulin, based on gene silencing in Paramecium, which demonstrates that this protein, which localizes at the basal bodies, is essential for the assembly and anchorage of the centriolar microtubules.  相似文献   
990.
Myofiber survival and suppression of anoikis depend in large part on the merosin (laminin-2/-4)-integrin alpha7beta1D cell adhesion system; however, the question remains as to the nature of the signaling molecules/pathways involved. In the present study, we investigated this question using the C2C12 cell model of myogenic differentiation and its merosin- and laminin-deficient derivatives. Herein, we report that: 1) of four members of the Src family of tyrosine kinases studied (p60Src, p53/56Lyn, p59Yes, or p60Fyn), the expression and activity of p60Fyn are found in myotubes exclusively; 2) a severe decrease of p60Fyn activity correlates with myotube apoptosis/anoikis induced by pharmocological compounds (herbimycin A or PP2) which inhibit tyrosine kinases of the Src family, by merosin deficiency and by beta1 integrin inhibition; 3) myoblast survival depends on Fak and the MEK/Erk pathway, in contrast to myotubes; 4) the PI3-K pathway is not involved in either myoblast or myotube survival; and 5) p38alpha SAPK stimulation and activity (but not that of p38beta) are required in the progression of myotube apoptosis/anoikis induced by p60Fyn inhibition, merosin deficiency or beta1 integrin-inhibition; however, p38 is not involved in myoblast apoptosis. Taken together, these results suggest that the promotion of myotube survival by the merosin-alpha7beta1D adhesion system involves p60Fyn, and that disruptions in this cell adhesion system induce myotube apoptosis/anoikis through a p38alpha SAPK-dependent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号